161 research outputs found
Magnetism in Closed-shell Quantum Dots: Emergence of Magnetic Bipolarons
Similar to atoms and nuclei, semiconductor quantum dots exhibit formation of
shells. Predictions of magnetic behavior of the dots are often based on the
shell occupancies. Thus, closed-shell quantum dots are assumed to be inherently
nonmagnetic. Here, we propose a possibility of magnetism in such dots doped
with magnetic impurities. On the example of the system of two interacting
fermions, the simplest embodiment of the closed-shell structure, we demonstrate
the emergence of a novel broken-symmetry ground state that is neither
spin-singlet nor spin-triplet. We propose experimental tests of our predictions
and the magnetic-dot structures to perform them.Comment: 4 pages, 4 figures;
http://link.aps.org/doi/10.1103/PhysRevLett.106.177201; minor change
Aerosol reduction efficacy of different intra-oral suction devices during ultrasonic scaling and high-speed handpiece use
Background:
The COVID-19 pandemic led to significant changes in the provision of dental services, aimed at reducing the spread of respiratory pathogens through restrictions on aerosol generating procedures (AGPs). Evaluating the risk that AGPs pose in terms of SARS-CoV-2 transmission is complex, and measuring dental aerosols is challenging. To date, few studies focus on intra-oral suction. This study sought to assess the effectiveness of commonly used intra-oral suction devices on aerosol mitigation.
Methods:
Ultrasonic scaling and high-speed handpiece procedures were undertaken to generate aerosol particles. Multiple particle sensors were positioned near the oral cavity. Sensor data were extracted using single board computers with custom in-house Bash code. Different high-volume and low-volume suction devices, both static and dynamic, were evaluated for their efficacy in preventing particle escape during procedures.
Results:
In all AGPs the use of any suction device tested resulted in a significant reduction in particle counts compared with no suction. Low-volume and static suction devices showed spikes in particle count demonstrating moments where particles were able to escape from the oral cavity. High-volume dynamic suction devices, however, consistently reduced the particle count to background levels, appearing to eliminate particle escape.
Conclusions:
Dynamic high-volume suction devices that follow the path of the aerosol generating device effectively eliminate aerosol particles escaping from the oral cavity, in contrast to static devices which allow periodic escape of aerosol particles. Measuring the risk of SARS-CoV-2 transmission in a dental setting is multi-factorial; however, these data suggest that the appropriate choice of suction equipment may further reduce the risk from AGPs
Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms
We describe a global optimization technique using `basin-hopping' in which
the potential energy surface is transformed into a collection of
interpenetrating staircases. This method has been designed to exploit the
features which recent work suggests must be present in an energy landscape for
efficient relaxation to the global minimum. The transformation associates any
point in configuration space with the local minimum obtained by a geometry
optimization started from that point, effectively removing transition state
regions from the problem. However, unlike other methods based upon hypersurface
deformation, this transformation does not change the global minimum. The lowest
known structures are located for all Lennard-Jones clusters up to 110 atoms,
including a number that have never been found before in unbiased searches.Comment: 8 pages, 3 figures, revte
C-terminal citrullinated peptide alters antigen-specific APC:T cell interactions leading to breach of immune tolerance
In rheumatoid arthritis, the emergence of anti-citrullinated autoimmunity is associated with HLA-antigen-T cell receptor complexes. The precise mechanisms underpinning this breach of tolerance are not well understood. Porphyromonas gingivalis expresses an enzyme capable of non-endogenous C-terminal citrullination with potential to generate citrullinated autoantigens. Here we document how C-terminal citrullination of ovalbumin peptide323-339 alters the interaction between antigen-presenting cells and OTII T cells to induce functional changes in responding T cells. These data reveal that C-terminal citrullination is sufficient to breach T cell peripheral tolerance in vivo and reveal the potential of C-terminal citrullination to lower the threshold for T cell activation. Finally, we demonstrate a role for the IL-2/STAT5/CD25 signalling axis in breach of tolerance. Together, our data identify a tractable mechanism and targetable pathways underpinning breach of tolerance in rheumatoid arthritis and provide new conceptual insight into the origins of anti-citrullinated autoimmunity
In situ redox reactions facilitate the assembly of a mixed-valence metal-organic nanocapsule
C-alkylpyrogallol[4]arenes (PgCs) have been studied for their ability to form metal-organic nanocapsules (MONCs) through coordination to appropriate metal ions. Here we present the synthesis and characterization of an MnII/MnIII-seamed MONC in addition to its electrochemical and magnetic behavior. This MONC assembles from 24 manganese ions and 6 PgCs, while an additional metal ion is located on the capsule interior, anchored through the introduction of bridging nitrite ions. The latter originate from an in situ redox reaction that occurs during the self-assembly process, thus representing a new route to otherwise unobtainable nanocapsules
Effect of P to A Mutation of the N-Terminal Residue Adjacent to the Rgd Motif on Rhodostomin: Importance of Dynamics in Integrin Recognition
Rhodostomin (Rho) is an RGD protein that specifically inhibits integrins. We found that Rho mutants with the P48A mutation 4.4–11.5 times more actively inhibited integrin α5β1. Structural analysis showed that they have a similar 3D conformation for the RGD loop. Docking analysis also showed no difference between their interactions with integrin α5β1. However, the backbone dynamics of RGD residues were different. The values of the R2 relaxation parameter for Rho residues R49 and D51 were 39% and 54% higher than those of the P48A mutant, which caused differences in S2, Rex, and τe. The S2 values of the P48A mutant residues R49, G50, and D51 were 29%, 14%, and 28% lower than those of Rho. The Rex values of Rho residues R49 and D51 were 0.91 s−1 and 1.42 s−1; however, no Rex was found for those of the P48A mutant. The τe values of Rho residues R49 and D51 were 9.5 and 5.1 times lower than those of P48A mutant. Mutational study showed that integrin α5β1 prefers its ligands to contain (G/A)RGD but not PRGD sequences for binding. These results demonstrate that the N-terminal proline residue adjacent to the RGD motif affect its function and dynamics, which suggests that the dynamic properties of the RGD motif may be important in Rho's interaction with integrin α5β1
- …