10 research outputs found

    Analysis of demographics, risk factors, clinical presentation, and surgical treatment modalities for the ossified posterior longitudinal ligament

    No full text
    OBJECT: Ossification of the posterior longitudinal ligament (OPLL) is a rare disease that results in progressive myeloradiculopathy related to pathological ossification of the ligament from unknown causes. Although it has long been considered a disease of Asian origin, this disorder is increasingly being recognized in European and North American populations. Herein the authors present demographic, radiographic, and comorbidity data from white patients with diagnosed OPLL as well as the outcomes of surgically treated patients. METHODS: Between 1999 and 2010, OPLL was diagnosed in 36 white patients at Barrow Neurological Institute. Patients were divided into 2 groups: a group of 33 patients with cervical OPLL and a group of 3 patients with thoracic or lumbar OPLL. Fifteen of these patients who had received operative treatment were analyzed separately. Imaging analysis focused on signal changes in the spinal cord, mass occupying ratio, signs of dural penetration, spinal levels involved, and subtype of OPLL. Surgical techniques included anterior cervical decompression and fusion with corpectomy, posterior laminectomy with fusion, posterior open-door laminoplasty, and anterior corpectomy combined with posterior laminectomy and fusion. Comorbidities, cigarette smoking, and previous spine surgeries were considered. Neurological function was assessed using a modified Japanese Orthopaedic Association Scale (mJOAS). RESULTS: A high-intensity signal on T2-weighted MR imaging and a history of cervical spine surgery correlated with worse mJOAS scores. Furthermore, mJOAS scores decreased as the occupying rate of the OPLL mass in the spinal canal increased. On radiographic analysis, the proportion of signs of dural penetration correlated with the OPLL subtype. A high mass occupying ratio of the OPLL was directly associated with the presence of dural penetration and high-intensity signal. In the surgical group, the rate of neurological improvement associated with an anterior approach was 58% compared with 31% for a posterior laminectomy. No complications were associated with any of the 4 types of surgical procedures. In 3 cases, symptoms had worsened at the last follow-up, with only a single case of disease progression. Laminoplasty was the only technique associated with a worse clinical outcome. There were no statistical differences (p \u3e 0.05) between the type of surgical procedure or radiographic presentation and postoperative outcome. There was also no difference between the choice of surgical procedure performed and the number of spinal levels involved with OPLL. CONCLUSIONS: Ossification of the posterior longitudinal ligament can no longer be viewed as a disease of the Asian population exclusively. Since OPLL among white populations is being diagnosed more frequently, surgeons must be aware of the most appropriate surgical option. The outcomes of the various surgical treatments among the different populations with OPLL appear similar. Compared with other procedures, however, anterior decompression led to the best neurological outcomes

    Evaluation of a minimally invasive procedure for sacroiliac joint fusion – an in vitro biomechanical analysis of initial and cycled properties

    No full text
    Derek P Lindsey,1 Luis Perez-Orribo,2 Nestor Rodriguez-Martinez,2 Phillip M Reyes,2 Anna Newcomb,2 Alexandria Cable,2 Grace Hickam,2 Scott A Yerby,1 Neil R Crawford21SI-BONE, Inc., San Jose, CA, USA; 2Spinal Biomechanics Research Laboratory, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USAIntroduction: Sacroiliac (SI) joint pain has become a recognized factor in low back pain. The purpose of this study was to investigate the effect of a minimally invasive surgical SI joint fusion procedure on the in vitro biomechanics of the SI joint before and after cyclic loading.Methods: Seven cadaveric specimens were tested under the following conditions: intact, posterior ligaments (PL) and pubic symphysis (PS) cut, treated (three implants placed), and after 5,000 cycles of flexion–extension. The range of motion (ROM) in flexion–extension, lateral bending, and axial rotation was determined with an applied 7.5 N • m moment using an optoelectronic system. Results for each ROM were compared using a repeated measures analysis of variance (ANOVA) with a Holm–Šidák post-hoc test.Results: Placement of three fusion devices decreased the flexion–extension ROM. Lateral bending and axial rotation were not significantly altered. All PL/PS cut and post-cyclic ROMs were larger than in the intact condition. The 5,000 cycles of flexion–extension did not lead to a significant increase in any ROMs.Discussion: In the current model, placement of three 7.0 mm iFuse Implants significantly decreased the flexion–extension ROM. Joint ROM was not increased by 5,000 flexion–extension cycles.Keywords: biomechanics, iliosacral, arthrodesis, cadave
    corecore