10,266 research outputs found

    A new proton fluence model for E greater than 10 MeV

    Get PDF
    Researchers describe a new engineering model for the fluence of protons with energies greater than 10 MeV. The data set used is a combination of observations made primarily from the Earth's surface between 1956 and 1963 and observations made from spacecraft in the vicinity of Earth between 1963 and 1985. With this data set we find that the distinction between ordinary proton events and anomalously large proton events made in earlier work disappears. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. In contrast to earlier models, results do not depend critically on the fluence from any one event

    Chiral molecules split light: Reflection and refraction in a chiral liquid

    Get PDF
    A light beam changes direction as it enters a liquid at an angle from another medium, such as air. Should the liquid contain molecules that lack mirror symmetry, then it has been predicted by Fresnel that the light beam will not only change direction, but will actually split into two separate beams with a small difference in the respective angles of refraction. Here we report the observation of this phenomenon. We also demonstrate that the angle of reflection does not equal the angle of incidence in a chiral medium. Unlike conventional optical rotation, which depends on the path-length through the sample, the reported reflection and refraction phenomena arise within a few wavelengths at the interface and thereby suggest a new approach to polarimetry that can be used in microfluidic volumes

    Hyperfine Level Splitting for Hydrogen-Like Ions due to Rotation-Spin Coupling

    Full text link
    The theoretical aspects of spin-rotation coupling are presented. The approach is based on the general covariance principle. It is shown that the gyrogravitational ratio of the bare spin-1/2 and the spin-1 particles is equal unity. That is why spin couples with rotation as an ordinary angular momentum. This result is the rigorous substantiation of the cranking model. To observe the phenomenon, the experiment with hydrogen-like ions in a storage ring is suggested. It is found that the splitting of the 12!S1/2,F=1/21 ^2!S_{1/2}, F=1/2 hyperfine state of the 140Pr58+^{140}{\rm Pr}^{58+} and 142Pm60+^{142}{\rm Pm}^{60+} ions circulating in the storage ring ESR in Darmstadt along a helical trajectory is about 4.5 MHz. We argue that such splitting can be experimentally determined by means of the ionic interferometry.Comment: 6 pages, final versio

    Topological phase for entangled two-qubit states and the representation of the SO(3)group

    Full text link
    We discuss the representation of the SO(3)SO(3) group by two-qubit maximally entangled states (MES). We analyze the correspondence between SO(3)SO(3) and the set of two-qubit MES which are experimentally realizable. As a result, we offer a new interpretation of some recently proposed experiments based on MES. Employing the tools of quantum optics we treat in terms of two-qubit MES some classical experiments in neutron interferometry, which showed the π\pi -phase accrued by a spin-1/21/2 particle precessing in a magnetic field. By so doing, we can analyze the extent to which the recently proposed experiments - and future ones of the same sort - would involve essentially new physical aspects as compared with those performed in the past. We argue that the proposed experiments do extend the possibilities for displaying the double connectedness of SO(3)SO(3), although for that to be the case it results necessary to map elements of SU(2)SU(2) onto physical operations acting on two-level systems.Comment: 25 pages, 9 figure

    Outcomes From Consumer-Operated and Community Mental Health Services: A Randomized Controlled Trial

    Get PDF

    Fragmentation of explosively metastable glass [post-print]

    Get PDF
    An unusual form of glass with bulbous head and thin tail, known as Rupert\u27s drops, can withstand high impact or pressure applied to the head, but explodes instantly into small particles when the tail is broken. The mechanism is not well understood. To examine this, we performed macro- and microstatistical analyses of a sample of 500 g of fragments of exploded Rupert\u27s drops to determine the mass and particle distributions and associated fractal dimensions. To our knowledge, this is the first such statistical study of the fragmentation of a metastable material with large internal energy. The resulting fractal dimensionD = 1.06 ± 0.09, derived from the scaling region of the mass and particle distribution functions approximated by power laws, differs from fractal dimensions (usually ≥2) previously reported for many brittle materials. The observed distribution functions place constraints on proposed mechanisms for the explosive disintegration of the drops and presumably other physical systems characterized by high compressive stress at the surface and tensile stress within the core

    Compositeness effects, Pauli's principle and entanglement

    Get PDF
    We analyse some compositeness effects and their relation with entanglement. We show that the purity of a composite system increases, in the sense of the expectation values of the deviation operators, with large values of the entanglement between the components of the system. We also study the validity of Pauli's principle in composite systems. It is valid within the limits of application of the approach presented here. We also present an example of two identical fermions, one of them entangled with a distinguishable particle, where the exclusion principle cannot be applied. This result can be important in the description of open systems
    • …
    corecore