Fragmentation of explosively metastable glass [post-print]

Abstract

An unusual form of glass with bulbous head and thin tail, known as Rupert\u27s drops, can withstand high impact or pressure applied to the head, but explodes instantly into small particles when the tail is broken. The mechanism is not well understood. To examine this, we performed macro- and microstatistical analyses of a sample of 500 g of fragments of exploded Rupert\u27s drops to determine the mass and particle distributions and associated fractal dimensions. To our knowledge, this is the first such statistical study of the fragmentation of a metastable material with large internal energy. The resulting fractal dimensionD = 1.06 ± 0.09, derived from the scaling region of the mass and particle distribution functions approximated by power laws, differs from fractal dimensions (usually ≥2) previously reported for many brittle materials. The observed distribution functions place constraints on proposed mechanisms for the explosive disintegration of the drops and presumably other physical systems characterized by high compressive stress at the surface and tensile stress within the core

    Similar works