53,358 research outputs found

    Study made of resistance of stainless steels to zinc-vapor corrosion

    Get PDF
    Study of the corrosion resistance of several stainless steels to zinc vapor revealed that some stainless steels could be employed for use in zinc processing equipment housings or vapor lines

    Foolproof quick-release locking pin

    Get PDF
    Locking pin can be withdrawn only when stress on the joint is negligible. Pin consists of a forward-pointing sleeve, a spring-loaded sliding handle, and a sliding plunger. Plunger movement controls installation and withdrawal of pin

    Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys

    Get PDF
    Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    A Universal Temperature Profile for Galaxy Clusters

    Get PDF
    We investigate the predicted present-day temperature profiles of the hot, X-ray emitting gas in galaxy clusters for two cosmological models - a current best-guess LCDM model and standard cold dark matter (SCDM). Our numerically-simulated "catalogs" of clusters are derived from high-resolution (15/h kpc) simulations which make use of a sophisticated, Eulerian-based, Adaptive Mesh-Refinement (AMR) code that faithfully captures the shocks which are essential for correctly modelling cluster temperatures. We show that the temperature structure on Mpc-scales is highly complex and non-isothermal. However, the temperature profiles of the simulated LCDM and SCDM clusters are remarkably similar and drop-off as T+AFwpropto(1+r/ax)+AFwdeltaT +AFw-propto (1+-r/a_x)^{-+AFw-delta} where ax+AFwsimrvir/1.5a_x +AFw-sim r_{vir}/1.5 and +AFwdelta+AFwsim1.6+AFw-delta +AFw-sim 1.6. This decrease is in good agreement with the observational results of Markevitch et al.(1998) but diverges, primarily in the innermost regions, from their fit which assumes a polytropic equation of state. Our result is also in good agreement with a recent sample of clusters observed by BeppoSAX though there is some indication of missing physics at small radii (r<0.2rvirr<0.2 r_{vir}). We discuss the interpretation of our results and make predictions for new x-ray observations that will extend to larger radii than previously possible. Finally, we show that, for r>0.2rvirr>0.2 r_{vir}, our universal temperature profile is consistent with our most recent simulations which include both radiative cooling and supernovae feedback.Comment: 8 pages, 6 figures, accepted for publication in ApJ, full-page version of Fig. 2 at http://www.cita.utoronto.ca/+AH4-cloken/PAPERS/UTP/f2.ep

    Magnetization Relaxation via Quantum and Classical Vortex Motion in a Bose Glass Superconductor

    Full text link
    I show that in Bose Glass superconductor with high jcj_c and at low TT the magnetization relaxation (S), dominated by quantum tunneling, is jc\propto{\sqrt j_c}, which crosses over to the conventional classical rate T/jc\propto T/j_c at higher TT and lower jcj_c, with the crossover Tjc3/2T^*\sim j_c^{3/2}. I argue that due to interactions between flux lines there exist three relaxation regimes, depending on whether BBϕBB_\phi, corresponding to Strongly-pinned Bose Glass (SBG) with large jc2j_{c2}, Mott Insulator (MI) with vanishing S, and Weakly-pinned Bose Glass (WBG) characterized by small jc1j_{c1}. I discuss the effects of interactions on jcj_c and focus attention on the recent experiment which is consistently described by the theory.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with figures already inside text; to appear in Phys. Rev. Lett.(1995

    Thermodynamics of Twisted DNA with Solvent Interaction

    Full text link
    The imaginary time path integral formalism is applied to a nonlinear Hamiltonian for a short fragment of heterogeneous DNA with a stabilizing solvent interaction term. Torsional effects are modeled by a twist angle between neighboring base pairs stacked along the molecule backbone. The base pair displacements are described by an ensemble of temperature dependent paths thus incorporating those fluctuational effects which shape the multisteps thermal denaturation. By summing over 107108\sim 10^7 - 10^8 base pair paths, a large number of double helix configurations is taken into account consistently with the physical requirements of the model potential. The partition function is computed as a function of the twist. It is found that the equilibrium twist angle, peculiar of B-DNA at room temperature, yields the stablest helicoidal geometry against thermal disruption of the base pair hydrogen bonds. This result is corroborated by the computation of thermodynamical properties such as fractions of open base pairs and specific heat.Comment: The Journal of Chemical Physics (2011) in pres

    Markov Chain Modeling of Polymer Translocation Through Pores

    Full text link
    We solve the Chapman-Kolmogorov equation and study the exact splitting probabilities of the general stochastic process which describes polymer translocation through membrane pores within the broad class of Markov chains. Transition probabilities which satisfy a specific balance constraint provide a refinement of the Chuang-Kantor-Kardar relaxation picture of translocation, allowing us to investigate finite size effects in the evaluation of dynamical scaling exponents. We find that (i) previous Langevin simulation results can be recovered only if corrections to the polymer mobility exponent are taken into account and that (ii) the dynamical scaling exponents have a slow approach to their predicted asymptotic values as the polymer's length increases. We also address, along with strong support from additional numerical simulations, a critical discussion which points in a clear way the viability of the Markov chain approach put forward in this work.Comment: 17 pages, 5 figure

    Cluster geometry and survival probability in systems driven by reaction-diffusion dynamics

    Full text link
    We consider a reaction-diffusion model incorporating the reactions A -> 0, A -> 2A and 2A -> 3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. As well as briefly examining this critical behavior in 2+1 dimensions, we pay particular attention to the cluster geometry. We observe the different cluster structures that form at criticality for the three different types of critical behavior and show that there exists a linear relationship for the probability of survival against initial cluster size at the tricritical point only.Comment: 4 pages, 6 figure

    Linear response of a grafted semiflexible polymer to a uniform force field

    Full text link
    We use the worm-like chain model to analytically calculate the linear response of a grafted semiflexible polymer to a uniform force field. The result is a function of the bending stiffness, the temperature, the total contour length, and the orientation of the field with respect to that of the grafted end. We also study the linear response of a worm-like chain with a periodic alternating sequence of positive and negative charges. This can be considered as a model for a polyampholyte with intrinsic bending siffness and negligible intramolecular interactions. We show how the finite intrinsic persistence length affects the linear response to the external field.Comment: 6 pages, 3 figure
    corecore