3,772 research outputs found

    Lensing Effects on the Protogalaxy Candidate cB58 and their Implications for the Cosmological Constant

    Get PDF
    The amplification of the protogalaxy candidate cB58 due to gravitational lensing by the foreground cluster of galaxies MS1512.4+3647 is quantified based on recent ROSAT and ASCA X-ray observations. It is found that the amplification is at most 25 for any reasonable cosmological model with or without cosmological constant. It is also argued that the system may be used to place new constraints on the value of the cosmological constant. The gas mass fraction for this cluster is found to be about 0.2.Comment: LaTex, 9 pages, 9 figures, uses aas2pp4.sty, Accepted for publication in Ap

    The role of electronic triplets and high-lying singlet states in the deactivation mechanism of the parent BODIPY: An ADC(2) and CASPT2 study

    Full text link
    The potential tunability of the spectroscopic properties of the BODIPY parent dye by suitable functionalization makes it attractive for a number of applications. Unfortunately, its strong fluorescence against minor intersystem crossing to the triplet states prevents its application in photodynamic therapy. With the perspective of designing BODIPY derivatives with enhanced intersystem crossing, the goal of this work is two-fold: (i) investigate the main deactivation channels of the parent BODIPY following irradiation, paying particular attention to the accessibility of the triplet state potential energy surfaces, as well as the non-radiative pathways involving the second brightest more stable singlet electronic state, S2, and (ii) evaluate the performance of the computationally efficient second order algebraic-diagrammatic construction scheme for the polarization propagator, (ADC(2)) against the complete active space second-order perturbation theory (CASPT2) method. Three singlet/triplet crossings were found, all of them with small spin-orbit couplings, being the S1/T2 crossing the most plausible for the observed intersystem crossing yield. Methodologically, it is found that the ADC(2) method qualitatively reproduces the landscape of the potential energy profiles for the photophysical processes investigated; however, it systematically underestimates the energies of the stationary points and crossings of the same and different multiplicity, with the largest discrepancies found at S1/S0 crossing points. Our CASPT2 results provide a comprehensive picture of the landscape of the excited state potential energy surfaces of the parent BODIPY that might serve as a basis for the rational design of photosensitizers with a particular photophysical profileThis work has been supported by the Project CTQ2015-63997- C2 of the Ministerio de Economía y Competitividad of Spain. I.C. gratefully acknowledges the “Ramón y Cajal” program of the Ministerio de Economía y Competitividad of Spain. M.D.V. thanks the Marie Curie Actions, within the Innovative Training Network-European Join Doctorate in Theoretical Chemistry and Computational Modelling TCCM-ITN-EJD-642294, for financial suppor

    Kondo Effect of a Magnetic Ion Vibrating in a Harmonic Potential

    Full text link
    To discuss Kondo effects of a magnetic ion vibrating in the sea of conduction electrons, a generalized Anderson model is derived. The model includes a new channel of hybridization associated with phonon emission or absorption. In the simplest case of the localized electron orbital with the s-wave symmetry, hybridization with p-waves becomes possible. Interesting interplay among the conventional s-wave Kondo effect and the p-wave one and the Yu-Anderson type Kondo effect is found and the ground state phase diagram is determined by using the numerical renormalization group method. Two different types of stable fixed points are identified and the two-channel Kondo fixed points are generically realized on the boundary.Comment: 15 pages, 17 figures, J. Phys. Soc. Jpn. 80 (2011) No.6 to be publishe

    Gravitational Lensing by Nearby Clusters of Galaxies

    Full text link
    We present an estimation of the expected number of arcs and arclets in a sample of nearby (z<0.1) clusters of galaxies, that takes into account the magnitude limit of the objects as well as seeing effects. We show that strong lensing effects are not common, but also they are not as rare as usually stated. Indeed, for a given cluster, they present a strong dependence with the magnitude limit adopted in the analysis and the seeing of the observations. We also describe the procedures and results of a search for lensing effects in a sample of 33 clusters spanning the redshift range of 0.014 to 0.076, representative of the local cluster distribution. This search produced two arc candidates. The first one is in A3408 (z=0.042), the same arc previously discovered by Campusano & Hardy (1996), with z=0.073 and associated to the brightest cluster galaxy. The second candidate is in the cluster A3266 (z=0.059) and is near a bright elliptical outside the cluster center, requiring the presence of a very massive sub-structure around this galaxy to be produced by gravitational lensing.Comment: 22 pages including 9 Figures and 2 Tables, submitted to A

    Enhanced Kondo Effect in an Electron System Dynamically Coupled with Local Optical Phonon

    Full text link
    We discuss Kondo behavior of a conduction electron system coupled with local optical phonon by analyzing the Anderson-Holstein model with the use of a numerical renormalization group (NRG) method. There appear three typical regions due to the balance between Coulomb interaction UeeU_{\rm ee} and phonon-mediated attraction UphU_{\rm ph}. For Uee>UphU_{\rm ee}>U_{\rm ph}, we observe the standard Kondo effect concerning spin degree of freedom. Since the Coulomb interaction is effectively reduced as Uee−UphU_{\rm ee}-U_{\rm ph}, the Kondo temperature TKT_{\rm K} is increased when UphU_{\rm ph} is increased. On the other hand, for Uee<UphU_{\rm ee}<U_{\rm ph}, there occurs the Kondo effect concerning charge degree of freedom, since vacant and double occupied states play roles of pseudo-spins. Note that in this case, TKT_{\rm K} is decreased with the increase of UphU_{\rm ph}. Namely, TKT_{\rm K} should be maximized for Uee≈UphU_{\rm ee} \approx U_{\rm ph}. Then, we analyze in detail the Kondo behavior at Uee=UphU_{\rm ee}=U_{\rm ph}, which is found to be explained by the polaron Anderson model with reduced hybridization of polaron and residual repulsive interaction among polarons. By comparing the NRG results of the polaron Anderson model with those of the original Anderson-Holstein model, we clarify the Kondo behavior in the competing region of Uee≈UphU_{\rm ee} \approx U_{\rm ph}.Comment: 8 pages, 8 figure

    Formation of Low Mass Stars in Elliptical Galaxy Cooling Flows

    Get PDF
    X-ray emission from hot (T = 10^7 K) interstellar gas in massive elliptical galaxies indicates that 10^{10} M_sun has cooled over a Hubble time, but optical and radio evidence for this cold gas is lacking. We provide detailed theoretical support for the hypothesis that this gas has formed into low luminosity stars. Within several kpc of the galactic center, interstellar gas first cools to T = 10^4 K where it is heated by stellar UV and emits the observed diffuse optical line emission. This cooling occurs at a large number (10^6) of isolated sites. After less than a solar mass of gas has accumulated (10^{-6} M_sun/yr) at a typical cooling site, a neutral (HI or H_2) core develops in the HII cloud where gas temperatures drop to T = 15 K and the ionization level (from thermal X-rays) is very low (x = 10^{-6}). We show that the maximum mass of cores that become gravitationally unstable is only about 2 M_sun. No star can exceed this mass. Fragmentation of collapsing cores produces a population of low mass stars with a bottom-heavy IMF and radial orbits. Gravitational collapse and ambipolar diffusion are rapid. The total mass of star-forming (dust-free) HI or H_2 cores in a typical bright elliptical is only 10^6 M_sun, below current observational thresholds.Comment: 23 pages in AASTEX LaTeX with 8 figures; accepted by Astrophysical Journa

    Magnetically Robust Non-Fermi Liquid Behavior in Heavy Fermion Systems with f^2-Configuration: Competition between Crystalline-Electric-Field and Kondo-Yosida Singlets

    Full text link
    We study a magnetic field effect on the Non-Fermi Liquid (NFL) which arises around the quantum critical point (QCP) due to the competition between the f^2-crystalline-electric-field singlet and the Kondo-Yosida singlet states by using the numerical renormalization ground method. We show the characteristic temperature T_F^*, corresponding to a peak of a specific heat, is not affected by the magnetic field up to H_z^* which is determined by the distance from the QCP or characteristic energy scales of each singlet states. As a result, in the vicinity of QCP, there are parameter regions where the NFL is robust against the magnetic field, at an observable temperature range T > T_F^*, up to H_z^* which is far larger than T_F^* and less than min(T_{K2}, $Delta).Comment: 8 pages, 9 figur

    Localized Excitons and Breaking of Chemical Bonds at III-V (110) Surfaces

    Full text link
    Electron-hole excitations in the surface bands of GaAs(110) are analyzed using constrained density-functional theory calculations. The results show that Frenkel-type autolocalized excitons are formed. The excitons induce a local surface unrelaxation which results in a strong exciton-exciton attraction and makes complexes of two or three electron-hole pairs more favorable than separate excitons. In such microscopic exciton &quot;droplets&quot; the electron density is mainly concentrated in the dangling orbital of a surface Ga atom whereas the holes are distributed over the bonds of this atom to its As neighbors thus weakening the bonding to the substrate. This finding suggests the microscopic mechanism of a laser-induced emission of neutral Ga atoms from GaAs and GaP (110) surfaces.Comment: submitted to PRL, 10 pages, 4 figures available upon request from: [email protected]

    Is Thermal Instability Significant in Turbulent Galactic Gas?

    Full text link
    We investigate numerically the role of thermal instability (TI) as a generator of density structures in the interstellar medium (ISM), both by itself and in the context of a globally turbulent medium. Simulations of the instability alone show that the condenstion process which forms a dense phase (``clouds'') is highly dynamical, and that the boundaries of the clouds are accretion shocks, rather than static density discontinuities. The density histograms (PDFs) of these runs exhibit either bimodal shapes or a single peak at low densities plus a slope change at high densities. Final static situations may be established, but the equilibrium is very fragile: small density fluctuations in the warm phase require large variations in the density of the cold phase, probably inducing shocks into the clouds. This result suggests that such configurations are highly unlikely. Simulations including turbulent forcing show that large- scale forcing is incapable of erasing the signature of the TI in the density PDFs, but small-scale, stellar-like forcing causes erasure of the signature of the instability. However, these simulations do not reach stationary regimes, TI driving an ever-increasing star formation rate. Simulations including magnetic fields, self-gravity and the Coriolis force show no significant difference between the PDFs of stable and unstable cases, and reach stationary regimes, suggesting that the combination of the stellar forcing and the extra effective pressure provided by the magnetic field and the Coriolis force overwhelm TI as a density-structure generator in the ISM. We emphasize that a multi-modal temperature PDF is not necessarily an indication of a multi-phase medium, which must contain clearly distinct thermal equilibrium phases.Comment: 18 pages, 11 figures. Submitted to Ap
    • 

    corecore