6,196 research outputs found

    Elastic pppp and pˉp\bar pp scattering in the models of unitarized pomeron

    Full text link
    Elastic scattering amplitudes dominated by the Pomeron singularity which obey the principal unitarity bounds at high energies are constructed and analyzed. Confronting the models of double and triple (at t=0t=0) Pomeron pole (supplemented by some terms responsible for the low energy behaviour) with existing experimental data on pppp and pˉp\bar pp total and differential cross sections at s≥5\sqrt{s}\geq 5 GeV and ∣t∣≤6|t|\leq 6 GeV2^{2} we are able to tune the form of the Pomeron singularity. Actually the good agreement with those data is received for both models though the behaviour given by the dipole model is more preferable in some aspects. The predictions made for the LHC energy values display, however, the quite noticeable difference between the predictions of models at t≈−0.4t\approx -0.4 GeV2^{2}. Apparently the future results of TOTEM will be more conclusive to make a true choice.Comment: Revtex4, 8 pages, 5 figures. Text is improved, no changes in figures and conclusions. Version to be published in Phys. Rev.

    Optimal trap shape for a Bose gas with attractive interactions

    Full text link
    Dilute Bose gas with attractive interactions is considered at zero temperature, when practically all atoms are in Bose-Einstein condensate. The problem is addressed aiming at answering the question: What is the optimal trap shape allowing for the condensation of the maximal number of atoms with negative scattering lengths? Simple and accurate analytical formulas are derived allowing for an easy analysis of the optimal trap shapes. These analytical formulas are the main result of the paper.Comment: Latex file, 21 page

    Spin superfluidity and spin-orbit gauge symmetry fixing

    Full text link
    The Hamiltonian describing 2D electron gas, in a spin-orbit active medium, can be cast into a consistent non-Abelian gauge field theory leading to a proper definition of the spin current. The generally advocated gauge symmetric version of the theory results in current densities that are gauge covariant, a fact that poses severe concerns on their physical nature. We show that in fact the problem demands gauge fixing, leaving no room to ambiguity in the definition of physical spin currents. Gauge fixing also allows for polarized edge excitations not present in the gauge symmetric case. The scenario here is analogous to that of superconductivity gauge theory. We develop a variational formulation that accounts for the constraints between U(1) physical fields and SU(2) gauge fields and show that gauge fixing renders a physical matter and radiation currents and derive the particular consequences for the Rashba SO interaction.Comment: to appear in EP

    Covariant description of kinetic freeze out through a finite time-like layer

    Full text link
    The Freeze Out (FO) problem is addressed for a covariant FO probability and a finite FO layer with a time-like normal vector continuing the line of studies introduced in Ref. [1]. The resulting post FO momentum distribution functions are presented and discussed. We show that in general the post FO distributions are non-thermal and asymmetric distributions even for time-like FO situations.Comment: 10 pages, 12 figures, major rewrite with changed content, corrected typos and new references adde

    Cross-classified multilevel models improved standard error estimates of covariates in clinical outcomes – a simulation study

    Get PDF
    Objective: To compare estimates of effect and variability resulting from standard linear regression analysis and hierarchical multilevel analysis with cross-classified multilevel analysis under various scenarios. Study design and setting: We performed a simulation study based on a data structure from an observational study in clinical mental health care. We used a Markov chain Monte Carlo approach to simulate 18 scenarios, varying sample sizes, cluster sizes, effect sizes and between group variances. For each scenario, we performed standard linear regression, multilevel regression with random intercept on patient level, multilevel regression with random intercept on nursing team level and cross-classified multilevel analysis. Results: Applying cross-classified multilevel analyses had negligible influence on the effect estimates. However, ignoring cross-classification led to underestimation of the standard errors of the covariates at the two cross-classified levels and to invalidly narrow confidence intervals. This may lead to incorrect statistical inference. Varying sample size, cluster size, effect size and variance had no meaningful influence on these findings. Conclusion: In case of cross-classified data structures, the use of a cross-classified multilevel model helps estimating valid precision of effects, and thereby, support correct inferences

    Measurement of Dielectric Suppression of Bremsstrahlung

    Full text link
    In 1953, Ter-Mikaelian predicted that the bremsstrahlung of low energy photons in a medium is suppressed because of interactions between the produced photon and the electrons in the medium. This suppression occurs because the emission takes place over on a long distance scale, allowing for destructive interference between different instantaneous photon emission amplitudes. We present here measurements of bremsstrahlung cross sections of 200 keV to 20 MeV photons produced by 8 and 25 GeV electrons in carbon and gold targets. Our data shows that dielectric suppression occurs at the predicted level, reducing the cross section up to 75 percent in our data.Comment: 11 pages, format is postscript file, gzip-ed, uuencode-e
    • …
    corecore