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Abstract

Objective: To compare estimates of effect and variability resulting from standard linear regression analysis and hierarchical multilevel
analysis with cross-classified multilevel analysis under various scenarios.

Study design and setting: We performed a simulation study based on a data structure from an observational study in clinical mental
health care. We used a Markov chain Monte Carlo approach to simulate 18 scenarios, varying sample sizes, cluster sizes, effect sizes
and between group variances. For each scenario, we performed standard linear regression, multilevel regression with random intercept
on patient level, multilevel regression with random intercept on nursing team level and cross-classified multilevel analysis.

Results: Applying cross-classified multilevel analyses had negligible influence on the effect estimates. However, ignoring cross-
classification led to underestimation of the standard errors of the covariates at the two cross-classified levels and to invalidly narrow
confidence intervals. This may lead to incorrect statistical inference. Varying sample size, cluster size, effect size and variance had no
meaningful influence on these findings.

Conclusion: In case of cross-classified data structures, the use of a cross-classified multilevel model helps estimating valid precision
of effects, and thereby, support correct inferences. © 2022 The Author(s). Published by Elsevier Inc. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction studies should account for the (oftentimes) clustered data
structure. For instance, clustered data structures due to par-
ticipation of multiple centers or multiple wards within a
single center can occur and demand multilevel modelling
to account for clustering of observations within centers
or wards. However, multilevel modelling may not com-
pletely suffice in case of clustered observations in more
than one cluster, whose relationship is not strictly hierar-
chical. When a strictly hierarchical model is not adequate,
cross-classified multilevel models may be needed [8—10].

Several authors use “school and neighborhood effects”
to clarify the nature of cross-classification [11,12]. School
and neighborhood effects describe observations on chil-
dren’s clustered in their schools and in their neighborhoods
simultaneously [11,12]. Contextual data are often cross-
monding author. Tel.: 431208913500 classified as students living in the same neighborhood may

E-mail address: p.doedens@amsterdamume.nl (P. Doedens). attend different schools and students in the same school

Rigorous applied clinical research on clinical patient
outcomes is essential to enhance quality of care. In clin-
ical settings, such as hospitals, nursing homes or mental
health facilities, the quality of nursing staff is associated
with adequate quality and safety of patient care [1-4]. The
influence of nurses on quality of care in clinical settings
has consequences, for instance, for studies on risk factors.
When such research targets the effects of nurses on care,
clustering of observations is a potential source of bias or
incorrect inference in the analysis. Several studies on pa-
tient outcomes, also take staff (e.g., nurses) characteristics
into account [5-7]. To be valid, the data-analysis of such
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What is new?

e Clinical research that accounts for patient and
staff characteristics often has a cross-classified data
structure, which we refer to as patient and shift ef-
fects.

* Ignoring a cross-classified data structure has little
effect on fixed effects, but may lead to invalid stan-
dard errors.

¢ Clinical researchers should use cross-classified mul-
tilevel models when data structures deviate substan-
tially from strict hierarchy to prevent invalid esti-
mates of the precision of effects.

may live in different neighborhoods. The cross-classified
multilevel model (CCMM), also known as cross-classified
random-effects model, allows researchers to take into ac-
count this particular data structure in one analysis [11].

In the health sciences, the need to distinguish cross-
clustering of institutions and neighborhoods may also oc-
cur, such as in community mental health care [13,14] and
hospital care [15-17]. Application of CCMM in clinical
nursing science is, however, slightly different from cross-
classification of institution and neighborhood effects. On
clinical wards, several nurses care for a patient during a
shift. This implies “clustering of nurses within patients”.
On the other hand, nurses care for more than one patient
during their shifts, which implies “clustering of patients
within nurses” (Fig. 1A). Thereby, patients and nurses are
crossed factors in this data structure (Fig. 1B). In analogy
with “school and neighborhood effects”, we refer to this
structure as “patient and shift effects”.

Due to this multiple clustering, CCMM is the appropri-
ate model when performing research on patient outcomes.
However, aside from some studies in neonatal intensive
care [18-20], few authors in nursing research have used
CCMM for their analyses. Unfamiliarity with (recognition
of) cross-classified data structures and additional complex-
ity in statistical models might explain this. For school and
neighborhood effects, several (simulation) studies are avail-
able to assist researchers in choosing between CCMM and
other regression techniques [11,21-23]. However, regard-
ing the influence of using CCMM on patient and shift ef-
fects under several circumstances, no information is avail-
able as far as we are aware.

Given that, theoretically, CCMM is the correct approach
to analyze cross-classified data, it is important to evalu-
ate the effect of using different, more commonly used ap-
proaches to data with a cross-classified structure due to
patient and shift effects in order to assess the magnitude
of errors that may result from using theoretically subop-
timal approaches. We, therefore, aim to familiarize clini-
cal researchers with cross-classification and assist them in

the decision whether the added complexity of CCMM is
a price worth paying. Building on the guidance for good
quality simulation studies [24], we performed a simula-
tion study to compare the different techniques under vari-
ous scenarios. We based our simulation data on a real-life
observational study [25]. In this study, we analyzed the
influence of nursing teams on the frequency of seclusion
of patients on a closed psychiatric ward. We found that
teams with majority of female nurses and teams with high
mean scores of personality trait openness were associated
with higher seclusion probabilities for patients. Each shift
had a different nursing team composition and the patient
population on the ward is changing over time. This is a
clear example of patient and shift effects. Therefore, we
used this structure as blueprint for our simulations. We
added the full STATA code of our analysis as an online
supplement for other authors to perform CCMM [25].

2. Method
2.1. Procedures

We performed simulations of two-level cross-classified
multilevel models using Markov chain Monte Carlo sim-
ulations in STATA, version 14. The full code of our sim-
ulations is available upon request including the code used
for the CCMM analyses.

For each scenario of interest, we generated 1000 sam-
ples to compare the statistical methods using a normally
distributed continuous outcome variable at the patient level.
We generated two covariates at the level of the patients,
namely, sex (dichotomous, 50% male and 50% female) and
age (continuous with mean [M] = 50 and standard devi-
ation [SD] = 10). We also created two covariates at the
level of nursing teams, namely, team composition (46% of
the teams were male only vs. 54% all female or a mixed
team of male and female nurses) and the mean number
of years of work experience in a team (continuous with
M = 5 and SD = 2). We created a categorical variable
indicating daily work shifts (day shift, evening shift and
night shift) represented by two dummy variables and used
day shift as a reference category.

2.2. Scenarios

We performed moderately independent simulations on
different scenarios that varied in sample sizes, cluster sizes,
effect sizes and between group variances (Table 1). Mod-
erately independent means that we use the same simulated
data sets to compare the statistical methods [24].

For every scenario (eighteen in total), we performed
four different analyses, namely 1) standard linear regres-
sion ignoring clustering at both patient and nursing team
level.; 2) multilevel regression with random intercept at
patient level, ignoring clustering at nursing team level; 3)
multilevel regression with random intercept at nursing team
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Figure 1a: Presence of patients and nursing teams

Shift Team 1 Team?2 |Team3 |Team4 | Team5 | Patient1 | Patient2 | Patient3 | Patient4 | Patient 5

January 1, day shift X X

January 1, evening shift X

January 2, day shift X

X
January 1, night shift X X
X
X

January 2, evening shift X

January 2, night shift X

January 3, day shift X

x| X| X| X| X| X| X X
x| X X| X| X| X X

x| X| X| X| X| X

January 3, evening shift X

x| x| x| X| X

x
x

January 3, night shift X

Figure 1b: Example of patient and shift effects based on Figure 1a

Patient 1 Patient2 | Patient3 | Patient4 | Patient5
Team 1 XX XX X X
Team 2 X X X
Team 3 X XXX XXX XX XX
Team 4 X XX XX XX XX
Team 5 X X X X

Fig. 1. It is an example of patient and shift effects, we explore patients and nursing teams of a ward in three consecutive days (i.e., nine unique
shifts). Patients one and two were already admitted before the first shift. Patient one was discharged during the evening shift of January 2, patient
two was still admitted during the last shift. Patient three was admitted during the evening shift on January 1 and stayed until the last shift. Patient
four was admitted during night shift on January 1 and discharged in the evening shift of January 3. Patient five was admitted in the evening shift
of January 2 and stayed until the last shift. Each nursing team has a unique combination of individual nurses. Nursing team one worked two
consecutive day shifts (January 1 and 2), team two only worked during the evening shift of January 2. Team three worked the three-night shifts.
Team four worked the last two evening shifts and team five worked the day shift on January 3. We see that patients form clusters within nursing
teams, but nursing teams also form clusters within patients. The clustering is not strictly hierarchical. This is a cross-classified data structure.

Table 1. The components of simulated scenarios

Sample size (2 options) Cluster size (2 options) Effect size (2 options) Variance (3 options)
Larger groups Larger clusters Stronger effect Large variance
N = 50 patients; N = 25 shifts (patients); B = 2 (team composition, o2 =0.3
N = 100 teams N = 10-15 shifts (teams) all male teams);
B = 1 (work experience,
years);
B = 2 (sex);

B = 0.2 (age, years);
B = -1 (shift, two dummy
variables)

Smaller groups Smaller clusters Weaker effect Intermediate variance
N = 10 patients; N = 5 shifts (patients); B = 0.2 (team 02 =0.2
N = 20 teams N = 2-3 shifts (teams) composition, all male

teams);

B = 0.1 (work experience);

B = 0.2 (sex);

B = 0.02 (age, years);

B = -0.1 (shift, two

dummy variables)

Small variance
a2 =0.1
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Box 1. STATA code to run the different analyses

—

mixed y sex age maleteams experience

eveningshift nightshift

2 mixed y sex age maleteams experience
eveningshift nightshift Il patient:

3 mixed y sex age maleteams experience
eveningshift nightshift Il team:

4 mixed y sex age maleteams experience
eveningshift nightshift Il _all: R.patient Il team:

5 mixed y sex age maleteams experience

eveningshift nightshift Il _all: R.team Il patient:

1, Linear mixed model without random intercepts; 2, Linear mixed model with a random intercept on patient level; 3, Linear mixed
model with a random intercept on nursing team level; 4, CCMM taking into account both levels of clustering; 5, Alternative for CCMM

taking into account both levels of clustering.

level, ignoring clustering at patient level; and 4) CCMM,
which takes into account clustering both at nursing team
level and patient level (Box 1).

Our basic scenario consisted of 50 unique patients who
stayed on the ward for a duration of 25 shifts (approx-
imately eight days), making up 1250 shifts. 100 unique
nursing teams covered all 1250 shifts with each team at-
tending 10-15 shifts. Every shift has a unique outcome
measure; therefore, the number of shifts that a patient
stayed at the ward is equivalent to the number of observa-
tions. In other words, the basic scenario had samples with
50 patients with 25 observations and 100 unique nursing
teams with 10-15 observations. We varied the basic sce-
nario by lowering the number of patients (sample size),
resulting in samples with 10 patients with 25 observations
and 20 nursing teams with 10-15 observations. We also
varied by lowering the number of observations (cluster
size), with samples consisting of 50 patients with 5 ob-
servations and 100 nursing teams with 2-3 observations.

We varied the effect sizes (i.e., regression coefficient
B [beta]) of the covariates between stronger and weak
effects. Stronger effect size meant 5 = 2 for the effect
of patients’ sex and the effect of team composition (all
male teams). S = 1 for mean work experience of nursing
teams, 8 = 0.2 for the effect of patient age (effect per year
older) and 8 = -1 for shift covariates (evening shift and
night shift). Weak effect size meant 5 = 0.2 for both di-
chotomous covariates (patients’ sex and only male nurses
present), 5 = 0.1 for mean work experience of nursing

Table 2. Definition of reported criteria and abbreviations

teams, 8 = 0.02 for patients’ age and S = -0.1 for shift co-
variates (evening shift and night shift). We based the ratio
between the magnitudes of 5 on the findings in a real-life
study on which we based our data structure. We analyzed
all scenarios with large between group variance (0> = 0.3),
intermediate between group variance (0> = 0.2) and small
between group variance (0> = 0.1).

For each scenario, we estimated 8 and standard error
(SE) of fixed parameters (i.e., covariates on both patient
and nursing team level) as well as variances at the differ-
ent levels and reported coverage and bias to assess model
performance. Bias represents the deviation from the true
value of the effect size in the simulation [24]. Coverage
represents the proportion of times that the confidence inter-
val of the simulations contains the true value of the regres-
sion coefficient. Coverage should be close to the chosen
confidence interval, in our case 95% [24] (Table 2).

3. Results

We summarize full results of our simulation in On-
line supplement 1. Effect size estimations (i.e., regression
coefficients) were stable with all regression approaches
used. Changes in sample size, cluster sizes and between-
cluster variances had no major influence on the estimated
effects.

We observed an effect on the SEs of the covariates.
When applying a multilevel model with a random intercept
at the patient level and ignoring clustering at the nursing

Definition
M Mean
SD Standard deviation
B (beta) Regression coefficient of fixed effects (or: covariates)
SE Standard error of fixed effects (or: covariates)
Bias Relative deviation of estimate 8 compared to true (W)*IOO%
Coverage Proportion of times that the simulated confidence interval contains the true regression coefficient 3, coverage

should be around 95%
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M Model1 ® Model 2

1,2

0,8

0,6

0,4

0,2

2y 18y 4 é34

Patients' gender  Patients' age

All male teams

Model 3 Model 4

T

Mean team
experience

Evening shiftt Night shiftt

Fig. 2. Standard error in basic scenario. = dichotomous dummy variable, compared to day shift. 1 = Linear mixed model without random
intercepts; 2 = Linear mixed model with a random intercept on patient level; 3 = Linear mixed model with a random intercept on nursing team
level; 4 = CCMM taking into account both levels of clustering. “(For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)”

team level (model 2), the estimations of the SE of pa-
tient level covariates increased, while the estimations of
the SE at the nursing team level covariates were stable.
Similarly, in model 3 (with a random intercept at the nurs-
ing team level and ignoring clustering at the patient level),
we observed that the SE of nursing team level covariates
increased, while the estimations of the SE for patient level
covariates did not. In the CCMM model, we observed in-
creased SEs for both patient level covariates and nursing
team level covariates.

For example, when performing standard linear regres-
sion (model 1) in our basic scenario with stronger effect
size and large variance, SE was 0.47 for patients’ sex and
0.47 for team composition. Adding a random intercept at
the patient level (model 2), SE was 0.99 for patients’ sex
and 0.48 for team composition. However, adding a random
intercept at the nursing team level (model 3) yielded a SE
of 0.77 for patients’ sex 0.86 for all male teams. Finally, in
the CCMM (model 4), SE was 1.09 for patients’ sex and
0.82 for team composition. Fig. 2 summarizes the find-
ings on SE across the different simulations for the basic
scenario.

Furthermore, we observed that the random effect vari-
ance per level decreased when adding more levels. Ran-
dom effect variance parameters in CCMM (compared
to linear mixed model with random intercept on pa-
tient or nursing team level) indicate that it is impor-
tant to account for clustering at both levels, otherwise
variance is misattributed either to the level that was
included or unaccounted for and remains as residual
variance.

CCMM models had better model performance, espe-
cially concerning the coverage of confidence intervals. We
observed more bias in simulations with weak effect sizes
compared to those simulating stronger effect sizes. In addi-
tion, effect sizes of continuous covariates were more stable
than the effect sizes for dichotomous covariates. Further-
more, scenarios with smaller sample sizes showed some
under-coverage (<95%). Under CCMM, both clusters of
patient and nursing covariates showed least biased estima-
tions with acceptable coverage (between 93% and 96%).

The shift covariates (measured at the lowest level) were
remarkably stable in terms of their effect size, and cover-
age. However, the more variance taken into account, the
lower the estimated SEs, with the CCMM models showing
the smallest SEs for these covariates (see Table 3).

4. Discussion

We investigated the effect of using different statistical
techniques on data with a cross-classified structure, specif-
ically on effect estimates and SEs of the covariates. We
found that standard and multilevel models caused little bias
in the estimates of effect of fixed covariates at the level
of patients and nursing teams, but underestimated the true
SE of these covariates. CCMM resulted in better coverage
compared to hierarchical multilevel models for the covari-
ates related to the ignored crossed level.

Patient and shift effects are common when taking into
account both patient level and nursing team level covari-
ates in a statistical model. It is unlikely that ignoring the
cross-classified data structure will lead to opposite conclu-
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Table 3. Results of the basic scenario simulation

Model 1: Standard linear

Model 2: Multilevel model

Model 3: Multilevel model

model (patients) (nurses) Model 4: CCMM
3 (SE) Bias Coverage [ (SE) Bias Coverage [ (SE) Bias Coverage [ (SE) Bias Coverage

Patients

Sex 1.94 -3% 56% 1.97 -2% 88% 1.96 -2% 79% 1.98 -1% 94%
(0.47) (0.99) (0.77) (1.09)

Age 0.20 0% 55% 0.20 0% 94% 0.20 0% 53% 0.20 0% 93%
(0.02) (0.05) (0.02) (0.05)

Nursing team

All male teams 1.97 2% 63% 2.01 0% 69% 1.97 -2% 92% 2.01 0% 95%
(0.47) (0.48) (0.86) (0.82)

Experience 1.00 0% 76% 1.00 0% 82% 1.00 0% 82% 1.00 0% 94%
(0.09) (0.09) (0.10) (0.10)

Shift?

Evening shift  -1.0 0% 96% -1.0 0% 95% -1.0 0% 94% -1.0 0% 94%
(0.45) (0.40) (0.40) (0.37)

Night shift -1.0 0% 93% -1.0 0% 95% -1.0 -1% 95% -1.0 0% 96%
(0.45) (0.40) (0.40) (0.36)

Variance

Residual 6.46 5.68 5.52 4.99

Patient 3.08 2.88

Nursing team 3.37 2.95

Caption: Our basic scenario had larger groups and clusters (50 patients with 25 shifts and 100 teams with 10-15 shifts), large variance
(02 = 0.3) and stronger effects. True 8 was 2.0 for patients’ sex, 0.2 for patients’ age, 2.0 for all male teams, 1.0 for mean nurses’ experience
in the team, -1.0 for evening shift and -1.0 for night shift. The full overview of our results can be found in Online supplement 1.

@ compared to day shift

sions about the direction and magnitude of effect sizes, as
our study showed that taking into account clustering at the
patient level and/or nursing team level had no major in-
fluence on the estimation of the covariates. However, we
found that ignoring cross-classification could lead to un-
derestimation of SEs. Underestimation of the SE results
in too small confidence intervals and may result in incor-
rect inference based on statistical significance, although we
would advise against the rigid use of statistical significance
for inference [26]. In contrast, the SEs of the indicators for
the daily work shifts showed overestimation in the analysis
ignoring (either part) of the clustering (i.e., estimation of
the SEs are larger than their true value) when not using
CCMM. This is a phenomenon often observed for covari-
ates measured at the lowest level [27].

To our knowledge, our study is the first to examine
patient and shift effects in a simulation study that com-
pares hierarchical multilevel models with CCMM. Several
other authors performed simulations of CCMM in other
applications, such as cross-sectional studies [22,28], longi-
tudinal studies [8,29] and meta-analyses [30]. Our finding
that the effect size estimation of the covariates showed lit-
tle bias is in line with previous simulation studies [22,28—
30]. Consequently, if researchers omit correction for cross-
classification, the risk of an incorrect conclusion about the
magnitude or direction of an effect seems limited. How-
ever, the underestimation of SEs of covariates may well

lead to incorrect inferences. Several other authors report
similar consequences on SEs. For instance, Meyers and
Beretvas [28] reported that when the model ignores clus-
tering of a factor (e.g., students within schools), SEs asso-
ciated with that factor were highly underestimated. Other
authors reported comparable findings in studies with both
simulated and real-world data [11,22,29,30].
Interpretation of our findings should take into account
the following uncertainties. First, we performed simula-
tions with a normally distributed continuous outcome vari-
able. Secondly, we assessed several scenarios with differ-
ent sample sizes and cluster sizes, but we did not eval-
uate uneven distribution of the size of samples and clus-
ters. In clinical practice, it is plausible that some nursing
team compositions are much more prevalent than others
are. Milliren, Evans [23] investigated this uneven sam-
ple size distribution across levels in an example of the
school-neighborhood effect and found no systematic bias
because of this phenomenon. Thirdly, the distribution of
between-level variance in our CCMM is (roughly) equal
between the two crossed levels. In real world data, this
is not necessarily the case. Dunn, Richmond [11] used
the correct model for cross-classified data in a real-world
example with school and neighborhood effects and com-
pared this to the hierarchal models with part of the cluster-
ing (school or neighborhood) ignored. The between-level
variance in both hierarchical models was roughly equal.
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However, in the CCMM model, schools caused almost all
between-level variance while neighborhood was no impor-
tant factor [11]. Fourthly, we did not simulate various lev-
els of (partial) cross-classification, but we suggest this as
an interesting subject for future simulation studies. Finally,
we simulated a relatively simple model between patients
and nursing teams. In real clinical research, more complex
data structures are common. For instance, in a multicenter
study, a partial cross-classified structure could be the care
with patients and nursing teams as crossed factors, both hi-
erarchically clustered within wards or hospitals. However,
Luo and Kwok [29] simulated cross-classified longitudinal
data with three levels and found similar results about the
fixed effects and their SEs for the covariates associated
with the ignored crossed level.

Complex statistical techniques such as CCMM can be
a challenge for (clinical) researchers to comprehend and
most statistical literature on this matter focusses on a spe-
cialized (statistical) audience. The use of CCMM is pos-
sible in several statistical packages. We used the mixed
command in STATA to perform our simulations (Box 1).
The lme4 package in R also implements CCMM [31,32].
In case of non-continuous endpoints (e.g. binary or count),
more specialized software is necessary, such as MLwiN
[33]. In the observational study, on which data the sim-
ulations were based, we used the runmlwin command in
STATA to perform cross-classified logistic regression anal-
ysis, of which the code is available elsewhere [25]. Leckie
and Charlton [33] provided a comprehensive description of
the runmlwin command to benefit from the best of both
packages. In order to make adequate decisions, researchers
need to recognize cross-classification in de structure of
their data. There is no formal test to analyze whether cross-
classification is present in data. Domain experts need to
argue theoretically whether this type of non-nested cluster-
ing is present. In our case, this was the result of extensive
debate (with multiple drawings of the data structure) be-
tween clinical researchers and epidemiologists. We believe
that this paper could assist both clinical researchers and
consulting statisticians with this decision-making process.
Ultimately, when investigating the influence of nurses on
patient outcomes, the use of CCMM could lead to estima-
tions of the precision of effect sizes that are more accurate,
which contributes to the further development of nursing
care in clinical settings.
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