432 research outputs found

    Projective dimension is a lattice invariant

    Get PDF
    We show that, for a free abelian group GG and prime power pνp^\nu, every direct sum decomposition of the group G/pνGG/p^\nu G lifts to a direct sum decomposition of GG. This is the key result we use to show that, if RR is a commutative von Neumann regular ring, and E\mathcal{E} a set of idempotents in RR, then the projective dimension of the ideal ER\mathcal{E} R as an RR-module is the same as the projective dimension of the ideal EB\mathcal{EB}, where B\mathcal{B} is the boolean algebra generated by E{1}\mathcal{E} \cup \{1\}. This answers a thirty year old open question of R. Wiegand. The proof is based on gaussian elimination on an ω×ω\omega \times \omega matrix, with adaptations enabling one to pass from the integers modulo pνp^\nu to the integers.Comment: LaTex. 16 page

    The color of polarization in cuprate superconductors

    Get PDF
    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed, using a xenon light source (600 K color temperature), a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. One of the members of the electron carrier cuprate superconductors (Nd(1.85)Ce(.15)CuO(4-x) was examined and found that it possesses the same color of polarization as all the electron hole carrier cuprate superconductors so far examined. The commonality of the characteristic color in the cuprate superconductors indicated that the presence of this color is independent of the nature of charge carriers. The correlation of this color with existence of superconductivity suggests that the origin of the color relates to the origin of superconductivity in the cuprate superconductors. Photometric techniques are also discussed

    Parameter-free expression for superconducting Tc in cuprates

    Get PDF
    A parameter-free expression for the superconducting critical temperature of layered cuprates is derived which allows us to express Tc in terms of experimentally measured parameters. It yields Tc values observed in about 30 lanthanum, yttrium and mercury-based samples for different levels of doping. This remarkable agreement with the experiment as well as the unusual critical behaviour and the normal-state gap indicate that many cuprates are close to the Bose-Einstein condensation regime.Comment: 5 pages, 2 figures. Will be published in Physical Review

    Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment

    Full text link
    The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process μ+dn+n+νμ\mu^- + d \rightarrow n + n + \nu_\mu. A new charge-sensitive preamplifier, operated at 140 K, has been developed for this detector. It achieved a resolution of 4.5 keV(D2_2) or 120 ee^- RMS with zero detector capacitance at 1.1 μ\mus integration time in laboratory tests. In the experimental environment, the electronic resolution is 10 keV(D2_2) or 250 ee^- RMS at a 0.5 μ\mus integration time. The excellent energy resolution of this amplifier has enabled discrimination between signals from muon-catalyzed fusion and muon capture on chemical impurities, which will precisely determine systematic corrections due to these processes. It is also expected to improve the muon tracking and determination of the stopping location.Comment: 18 pages + title page, 13 figures, to be submitted to JINST; minor corrections, added one reference, updated author lis

    Poor screening and nonadiabatic superconductivity in correlated systems

    Full text link
    In this paper we investigate the role of the electronic correlation on the hole doping dependence of electron-phonon and superconducting properties of cuprates. We introduce a simple analytical expression for the one-particle Green's function in the presence of electronic correlation and we evaluate the reduction of the screening properties as the electronic correlation increases by approaching half-filling. The poor screening properties play an important role within the context of the nonadiabatic theory of superconductivity. We show that a consistent inclusion of the reduced screening properties in the nonadiabatic theory can account in a natural way for the TcT_c-δ\delta phase diagram of cuprates. Experimental evidences are also discussed.Comment: 12 Pages, 6 Figures, Accepted on Physical Review

    Climate change litigation: a review of research on courts and litigants in climate government

    Get PDF
    Studies of climate change litigation have proliferated over the past two decades, as lawsuits across the world increasingly bring policy debates about climate change mitigation and adaptation, as well as climate change‐related loss and damage to the attention of courts. We systematically identify 130 articles on climate change litigation published in English in the law and social sciences between 2000 and 2018 to identify research trajectories. In addition to a budding interdisciplinarity in scholarly interest in climate change litigation we also document a growing understanding of the full spectrum of actors involved and implicated in climate lawsuits and the range of motivations and/or strategic imperatives underpinning their engagement with the law. Situating this within the broader academic literature on the topic we then highlight a number of cutting edge trends and opportunities for future research. Four emerging themes are explored in detail: the relationship between litigation and governance; how time and scale feature in climate litigation; the role of science; and what has been coined the “human rights turn” in climate change litigation. We highlight the limits of existing work and the need for future research—not limited to legal scholarship—to evaluate the impact of both regulatory and anti‐regulatory climate‐related lawsuits, and to explore a wider set of jurisdictions, actors and themes. Addressing these issues and questions will help to develop a deeper understanding of the conditions under which litigation will strengthen or undermine climate governance. This article is categorized under: Policy and Governance > Multilevel and Transnational Climate Change Governanc

    Disorder and Quantum Fluctuations in Superconducting Films in Strong Magnetic Fields

    Full text link
    We find that the upper critical field in a two-dimensional disordered superconductor can increase essentially at low temperatures. This happens due to the formation of local superconducting islands weakly coupled via the Josephson effect. The distribution of the superconducting islands is derived. It is shown that the value of the critical field is determined by the interplay of the proximity effect and quantum phase fluctuations. We find that the shift of the upper critical field is connected with the pinning properties of a superconductor.Comment: 4 page

    Observation of a Transition from BCS to HTSC-like Superconductivity in Ba_{1-x}K_xBiO_3 Single Crystals

    Full text link
    A study of temperature dependences of the upper critical field B_{c2}(T) and surface impedance Z(T)=R(T)+iX(T) in Ba_{1-x}K_xBiO_3 single crystals that have transition temperatures in the range 6 x>0.4) reveals a transition from BCS to unusual type of superconductivity. B_{c2}(T) curves corresponding to the crystals that have T_c>20 K have positive curvature (like in some HTSC), and those of the crystals with T_c<15 K fall on the usual Werthamer-Helfand-Hohenberg curve. R(T) and X(T) dependences of the crystals with T_c~30 K and T_c~11 K are respectively linear (like in HTSC) and exponential (BCS) in the temperature range T << T_c. The experimental results are discussed in connection with the extended saddle point model by Abrikosov.Comment: 5 pages, 5 figure

    Upper critical field for electrons in two-dimensional lattice

    Full text link
    We address a problem of the upper critical field in a lattice described by a two-dimensional tight-binding model with the on-site pairing. We develop a finite-system-approach which enables investigation of magnetic and superconducting properties of electrons on clusters, consisting of a few thousand sites. We discuss how the quasiparticle density of states changes with the applied external magnetic field and present the temperature dependence of the upper critical field. We also briefly discuss possible extension of the model to account for the properties of high-temperature superconductors.Comment: 4 pages, 3 postscript figures, revte

    Ergodic versus nonergodic behavior in oxygen deficient high-T_c superconductors

    Full text link
    The oxygen defects induced phase transition from nonergodic to ergodic state in superconductors with intragrain granularity is considered within the superconductive glass model. The model predictions are found to be in a qualitative agreement with some experimental observations in deoxygenated high-T_c single crystals
    corecore