
Journal of Pure and Applied Algebra 161 (2001) 205–217
www.elsevier.com/locate/jpaa

Projective dimension is a lattice invariant

Barbara L. Osofsky
Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road,

Piscataway, NJ 08854-8019, USA

Received 9 November 1999; received in revised form 2 March 2000
Communicated by C.A. Weibel

This paper is dedicated to the memory of Richard Pierce

Abstract

We show that, for a free abelian group G and prime power p�, every direct sum decomposition
of the group G=p�G lifts to a direct sum decomposition of G. This is the key result we use to
show that, for R a commutative von Neumann regular ring, and E a set of idempotents in R, then
the projective dimension of the ideal ER as an R-module the same as the projective dimension
of the ideal EB as a B-module, where B is the boolean algebra generated by E ∪ {1}. This
answers a 30 year old open question of R. Wiegand. c© 2001 Elsevier Science B.V. All rights
reserved.

MSC: Primary 13D05; 20K99; secondary 06E20

1. Introduction

Back in the late 1960s, Roger Wiegand asked the following question in [10]:
Let R be a commutative [von Neumann] regular ring and J an ideal of R generated
by a set E of idempotents. Let B be the Boolean algebra of all idempotents of
R. Then is the projective dimension of J = ER as an R-module the same as the
projective dimension of EB as a B-module?
In this paper we show that the answer to this question is ‘yes’.
Richard Pierce popularized this problem, and did some of the early work on it. It

is not diCcult to see that the answer is ‘yes’ if J is projective. In [8] Pierce showed
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that projective dimension of an ideal generated by an independent set of idempotents
in a boolean algebra was � where the independent set had cardinality ℵ� (here � ≥ !
is replaced by ∞ for projective dimension). Osofsky [4] proved the same result for
arbitrary commuting idempotents in any ring, so in the case of ideals generated by
independent idempotents the answer to the Wiegand question is ‘yes’. Then Pierce [9]
showed that it is ‘yes’ in case either the projective dimension of ER or the projective
dimension of EB is one. Since then, the problem has been solved in some special
cases with extra hypotheses on the idempotents forcing projective dimension to be
the subscript of the minimal aleph of a generating set, although the general problem
remained open.

The essence of the problem is that the additive order of some of the idempotents in
E might be one prime (for example the prime 2 in case R= B) and a diIerent prime
in another ring R′, or perhaps even inJnite in a third ring R′′. Here we conquer the
problem of diIerent primes by working in a (not regular) ring R of characteristic 0.
We show that the answer to Wiegand’s question is ‘yes’ in all cases.

In Section 2, we prove a subtle but elementary result about free abelian groups,
namely for any free abelian group G and any direct sum decomposition of G=p�G,
this decomposition lifts to a direct sum decomposition of G. In Section 3, we apply
this result to any commutative von Neumann regular ring R containing a lattice of
idempotents isomorphic to B. Unlike Pierce’s paper concerning the case of projective
dimension 1 [19], we do not give an internal characterization of projective dimension
of ideals in a commutative von Neumann regular ring. However, there is a candidate
for such a characterization in a series of papers by the author [5–7].

2. A theorem on abelian groups

The aim in this section is to prove the following:

Theorem A. Let G be a free abelian group and {b
: 
 ∈ I} a (free) basis for G=p�G
with p a prime. Then there exists a family of integers {u
: 
 ∈ I}; relatively prime
to p; and a free basis of G; {y
: 
 ∈ I}; such that y
=u
 b
 in G=p�G for all 
 ∈ I .

A way of restating this theorem is that the direct sum decomposition G=p�G =⊕

 b
 Z=p�Z lifts to a direct sum decomposition G=

⊕

 y
 Z. In fact, any direct sum

decomposition of G=p�G will lift to a direct sum decomposition of G by taking bases
of each of the summands and lifting them. We use the fact that the ring Z=p�Z is local,
that is, has a unique maximal ideal. If p� is replaced by an arbitrary integer which
has at least two distinct prime factors, the result is false since Z is indecomposable
whereas Z=nZ decomposes if n is a product of two relatively prime factors ¿ 1.

Basic notation. We Jx a prime power p�. For any abelian group G, we denote the
natural map from G to G=p�G by an overline. If Nx is an element of NG = G=p�G we
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will assume from the notation that x ∈ G is some preimage of Nx. If G is some free
abelian group, we will denote some free basis for G by

X = {x�: � ∈ K}
and we will denote a basis of NG as a (free) NZ-module by

B = {b
: 
 ∈ I}:

Reduction to the countable case. Much of this paper relies heavily on a beautiful paper
by Kaplansky [2] for both technique and results. Here we adapt the basic technique
of Kaplansky’s paper to get a specialized result on free abelian groups. We have the
same objective as Kaplansky did, namely to reduce the question under study to the
countable case.

Lemma 2.1. Let G be a nonzero free abelian group with free basis X ; and let B be
a basis of NG as a (free) NZ-module. Let c be any countable subset of B: Then there
exists a nonzero countably generated direct summand H of G such that

NH =
∞∑
i=0

b
i NZ

for {b
i : i ∈ !} some countable subset of B containing c : Moreover; H itself is
generated by a countable subset of X :

Proof. We are given that X = {x�: � ∈ K} is a free basis for G. Fix a lifting {b
}
of B. For any countable subset c ⊆I , let Xc ⊆K be the smallest (necessarily count-
able) subset of K such that

∑

∈c b
Z⊆∑

�∈Xc
x�Z. Similarly, for any countable sub-

set c ′ ⊆K , let Bc ′ ⊆I be the smallest (necessarily countable) subset of I such that∑
�∈c′ x� Z⊆∑


∈Bc′
b
 Z.

Now start with any nonempty countable set c0 such that c ⊆ c0 ⊆I . We use Jnite
induction to deJne two sequences {ci ; ci′: i¡!} of countable sets by

cn
′ = Xcn ;

cn+1 = Bcn′ :

In words, think of B as images of {b
: 
 ∈ I}. Starting with a countable subset c0

of the basis B of NG, use our lifting of B to get an inverse image c0 ⊆G and take the
smallest countable subset c0

′ of the basis X of G whose span contains c0. Now take
images of c0

′ modulo p� and Jnd the smallest countable subset c1 ⊇ c0 of the basis B

which span a group containing all of the elements of ci. Iterate a countable number of
times.

We then have for all i; c ′i ⊆ c ′i+1 and

Fn =
∑

∈cn

b
 NZ⊆Gn =
∑
�∈cn′

x� NZ⊆Fn+1 =
∑

∈cn+1

b
 NZ: (∗)
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Set H =
∑

�∈∪∞
n=0 cn′ x� Z. Clearly H is a direct summand of G. Moreover, H is

countably generated since the indexing set is a countable union of countable sets. Eq.
(∗) forces

NH =
∑


∈∪∞
i=0 Fi

b
 NZ:

Lemma 2.2. Let G be a nonzero free abelian group; and let B be a basis of NG
as a (free) NZ-module. Then G is the union of a well-ordered (by inclusion) family
{H�: �¡�} of subgroups such that H� and

⋃
�¡� H� are direct summands of G

for every � in the ordinal �; for each �; H�=
⋃

�¡� H� is countable; and each H� is
generated by some subset of the {b
: 
 ∈ I}.

Proof. Fix a basis X of G. Well order B. Assume we have H� for all �¡� such
that
(i) Each H� is generated by a subset of X;

(ii) H� is generated by some subset of B; and
(iii) H� ⊃H�′ if �¿�′.
(iv) H�=

⋃
�′¡� H�′ is countably generated.

H� and
⋃

�¡� H� are direct summands of G since they are generated by subsets of
our Jxed basis. If

⋃
�¡� H� �= G, that union cannot map onto NG. Let b� be the smallest

element of B (under the well ordering of B) not in
⋃

�¡� H�. Apply Lemma 2.1 to
get a countably generated subgroup K� generated by elements of X with b� ∈ K�

and K� generated by a subset of B. Set H� = K� +
⋃

�¡� H�. Since H� clearly has
the required properties and this process must eventually give all of G (at least by the
order type of B), by transJnite induction we are done.

Corollary 2.3. Assume that; for any countably generated free abelian group G with
B a basis for NG; there is a direct decomposition lifting of

NG =
⊕

∈I

b
 NZ

to the direct decomposition

G =
⊕

∈I

y
Z:

Then; Theorem A is true for any free abelian group G.

Proof. Using the notation of Lemma 2.2, we let G=
⋃

�¡� H� where for all �¡�; H�=
K� +

⋃
�¡� H� with K� countably generated. For each b
i in K� \ ⋃

�¡� H�, set
b
i = ci + b′i , where ci is the projection of b
i to

⋃
�¡� H�. If b′i = 0, ignore it and

renumber. By assumption, we can lift the direct sum decomposition of the quotient

H�

/⋃
�¡�

H� ≈ K�

/
K� ∩

⋃
�¡�

H� =
∞⊕
i=0

b′i NZ
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to a direct sum decomposition

K�

/
K� ∩

⋃
�¡�

H� =
⊕

b
i∈K�\∪�¡� H�

y′
i Z

with units {ui} such that y′
i − ui b′i ∈ p�G. Now set y
i =y′

i + ui ci so that y
i lifts b
i .
Assume for all �¡�; H� =

⊕
�≤� L�, where L� is the free group generated by a

lifting of the decomposition of H�=
⋃

�′¡� H�′ generated by the appropriate subset of
B. Then we have

⋃
�¡� H� =

⊕
�¡� L� and by the above, H� = L� ⊕

⊕
�¡� L�. By

transJnite induction we get G =
⊕

�¡� L�.

In=nite Gaussian elimination modulo p�. The reader is assumed thoroughly familiar
with the details of Gaussian elimination as developed in an introductory linear algebra
course. InJnite Gaussian elimination on a row Jnite ! × ! matrix can proceed very
much like the algorithm on a Jnite matrix. As in [1], one looks for a pivot in a row
rather than a column as in many texts and standard implementations of Jnite Gaussian
elimination. That insures that only a Jnite number of entries need to be examined to
either obtain a unit pivot or to know that no such pivot exists. Subtracting multiples of
a pivot row from all other rows to make entries in the pivot column equal to 0 will, in
general, involve an inJnite number of operations before the algorithm is complete. To
avoid this, in the inJnite case, rows are included with previously obtained pivot rows
one at a time, and one clears the previously obtained pivot columns in a row at the time
that the row is included, and then Jnds a pivot if possible and clears above the pivot
in the new pivot column. In the inJnite case there is no LU decomposition or forward
pass and back substitution because these might lead to rows changing inJnitely often,
and there are no row permutations because some row might conceivably be permuted
to a higher numbered position an inJnite number of times and thus never examined
for a pivot. However, it is still the case that a row Jnite !×! matrix is invertible if
and only if with these modiJcations of standard Gaussian elimination, inJnite Gaussian
elimination will now reduce the matrix to a matrix whose columns are a permutation
of the columns of the identity matrix.

We now modify inJnite Gaussian elimination to produce an algorithm which we
call inJnite Gaussian elimination modulo p�. 1 This algorithm clearly also works if
we have a Jnite matrix A. We indicate the variables needed in the algorithm with a
little information about them, then give the steps of the algorithm, and then add a
step-by-step explanation of what unusual steps do. We start with a row Jnite ! × !
matrix A with entries in Z. In our proof of Theorem A, the rows of A will be some
lifting of a given basis for NZ(!)

to elements of Z(!).
By the expression ‘principal submatrix’ of an inJnite matrix, we will mean the

submatrix obtained by taking the Jrst n rows and Jrst k columns of the matrix, where

1 The author has a working Maple V implementation of this algorithm. See the appendix in a copy of this
paper archived on http:==arXiv.org as math.RA/0007091, and there is a link to the Maple V worksheet at
http:==www.math.rutgers.edu=pub=∼osofsky=index.html.
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n and k are both Jnite. A ‘principal minor’ will be the determinant of a square principal
submatrix.

Additional variables are needed to perform the algorithm. We use a diagonal matrix
U (or a countable row vector) to hold units modulo p�. Multiplying row i of A by
an appropriate unit Ui; i enables us to make a crucial determinant 1. The actual row
reduction is done in arbitrarily large but Jnite principal submatrices of an !×! matrix
R. Another !×! matrix C (for candidates) holds, in a Jnite principal submatrix, the
current candidates for lifting basis elements times units. These candidates change during
the elimination but each row only changes a Jnite number of times. As the algorithm
progresses, we multiply (an initial segment of) row i of A by the appropriate unit Ui; i

(integer relatively prime to p�) and then insert it into both R and C . All changes to
C other than the concatenation of rows from UA consist of adding multiples of p� to
entries so nothing changes modulo p�. In addition, we use a Jnite square matrix M
which is generated from a submatrix of C and has determinant 1.

At the end of each loop of this algorithm, the matrix R will be a row reduction of
C with row operations captured by M . Also, any entry of R which is a multiple of
p� is 0; it is set to 0 before any arithmetic is done using it. At any given stage of
the algorithm we work with Jnite matrices large enough to hold all nonzero entries in
a Jnite number of rows. Moreover, the results of each loop of the algorithm applied
to NA are identical with the results of applying normal inJnite Gaussian elimination
to A.

Algorithm 1 (InJnite Gaussian elimination modulo p�). We start with an !×! inte-
ger valued row Jnite matrix A.
Step 1: Initialize. Let your row index I be set to 0. Set up the matrix variables

M ; C ; R and U . Set up a row vector J to hold pivot columns. Read the
0th row of A into R; replacing any element divisible by p� with 0:

Step 2: For K going from 0 to I – 1; subtract RI; J (K) times row K of R from row I
of R.

Step 3: Search row I of R for the Jrst entry which is relatively prime to p. If no
such element is found then STOP. The rows of A do not form a basis modulo
p�. Otherwise; let the Jrst entry relatively prime to p be in column J (I); and
call column J (I) the I th pivot column.

Step 4: Set UI; I equal to an integer u such that uRI; J (I) ≡ 1 modp�. Multiply row I of
A by u. If some entry in the resulting row is a multiple of p�; set that entry
to 0. Insert the result as row I in both C and R.

Step 5: For K going from 0 to I – 1; subtract RI; J (K) times row K of R from row I
of R.

Step 6: The pivot in row I of R is now congruent to 1 modulo p�. Subtract a multiple
of p� from it to make the pivot 1. Subtract the same multiple of p� from the
(I; J (I)) entry of C .

Step 7: If any entry in row I of R is a multiple of p�; subtract that multiple of p�

from the corresponding entry in C and set the entry in R equal 0:
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Step 8: For K going from 0 to I – 1; subtract RK;J (I) times row I of R from row K
of R to clear every entry in column J (I) above the Ith row.

Step 9: If any entry in R is a multiple of p�; then set that entry equal to 0:
Step 10: Set M equal to the matrix [CK;J (K)]0≤K≤I . Set C =MR.
Step 11: For each nonpivot column l of C , check to see if the Jrst nonzero entry Ck;l

is devisible by p�. If so, form the set Sl consisting of all li such that column
li is a pivot column, Ck;li is the Jrst nonzero entry in column li, and Rli ;l �= 0.
If Sl �= ∅, check if p� times the gcd, d, of Sl divides Ck;l. If so, express
this gcd d as a sum

∑
Sl
Ck;libli . Form a column vector with zeros everywhere

except for bli · Ck;l=d in row li, and add this to column l of R. Premultiply
by M , and use the result as the new column l of C . The new Ck;l will be 0.

Step 12: Read row I + 1 of A into R; replacing multiples of p� by 0:
Step 13: Increment I by 1 and GOTO Step 2.
END

That is the end of the algorithm. To get a picture of what is happening, at the end of
the (n− 1)th loop at Step 12 the column permuted matrix R (picturing j(i) as though
it were i) looks like

R =




1 0 · · · 0 r0; n

0 1 · · · 0 r1; n
...

...
. . .

...
... B · · ·

0 0 · · · 1 rn−1; n

rn;0 rn;1 · · · rn;n−1 rn;n D · · ·




for an appropriate Jnite matrix B and Jnite row D, and all entries in R which are
divisible by p� are 0.

Now for a more detailed explanation of how this algorithm works. In the permuted
matrix used in the discussion, j(i) will be treated as though it were i to aid in vi-
sualization of the progress of the algorithm. That is, we will pretend that we have
permuted the columns of the matrix.

Step 2 is the Jrst pass at clearing already obtained pivot columns (which have pivot
1) in row i. It is used to get the unit modp� we must multiply the ith row of A by to
make sure that we can make the pivot in row i equal to 1. It is not performed when
i = 0.

Step 6 relies on the claim that the pivot is congruent to 1 modulo p�. Why is that
claim true? Adding one row of a matrix to another corresponds to premultiplication by
a matrix of determinant 1. After Step 3, if we look at the principal minor of the column
permuted matrix R, it has determinant the (i; i) entry of the permuted R because it is
upper triangular with all other diagonal entries 1. When we multiply what was the last
row before Step 3 by u, we make that determinant congruent to 1 modulo p�. Now we
redo the elementary row operations of determinant 1 to get an upper triangular matrix
with element in the (i; j(i)) slot equal to the determinant.
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In Step 6, subtracting multiples of p� from the same entries in both R and C does
not change NC and does insure that the elementary row operations we have done so far
will reduce the new C to the new R.

Since we want entries in R congruent to 0 modp� to be 0, we set them to 0 in Step
9. This can only aIect entries in nonpivot columns. Now, we must make sure that our
C row reduces to the new R. This is done in Step 10. At this stage, the appropriate
principal submatrix of the column permuted matrix R is the identity matrix. So the row
operations we have done have reduced the corresponding principal submatrix of the
column permuted matrix C to the identity. By standard linear algebra, the matrix M
is the inverse of the product of the elementary matrices which produce this elimination
by premultiplication. Thus from R =M−1MR we see that setting C =MR gives us
a matrix which row reduces to the new R, and since R did not change modulo p�,
neither did MR.

In Step 11, the algorithm bounds the power of p� that can divide entries of C after
the corresponding row of A becomes all zeros. This step may change C and nonzero
entries in R modulo p�. The several imposed conditions on Sl insure that no zero
entry in column l above row k of R becomes nonzero, and the divisibility property
makes the added vector a multiple of p�. If a nonzero entry appears in C after all the
nonzero mod p� entries in its row occur in pivot columns, that multiple of p� may
propagate, but the propagation eventually leads to entries in the row divisible by higher
powers of p�, and eventually Step 11 will make all of these entries zero. Thus Step 11
makes sure that no row has an inJnite number of entries congruent to 0 modulo p�.

New row operations are only done to the rows above the pivot row when their entries
in the current pivot column is nonzero. Hence once the Jnite set of rows from 0 to
i have zero entries except for a pivot of 1, and there are no more nonzero multiples
of p� in these rows of C , those rows will no longer be aIected by the elimination
process.

The last steps of the algorithm just set up for the next loop.

Proof of Theorem A. By Corollary 2.3, it is enough to show that, for a countably
generated free abelian group G with B a basis for NG, there is a direct decomposition
lifting of

NG =
⊕

∈B

b
 NZ

to the direct decomposition

G =
⊕

∈B

y
Z

Form a matrix A whose rows are some lifting of B. Do inJnite Gaussian elimination
modulo p� on A. Since the rows of NA form a basis for NZ(!)

and modulo p� this
algorithm agrees with inJnite Gaussian elimination, after a Jnite number of steps, the
top i + 1 rows of R will be rows of the identity and all rows of the identity will
eventually arise as rows of R. Since every entry of R which is zero modulo p� is



B.L. Osofsky / Journal of Pure and Applied Algebra 161 (2001) 205–217 213

actually 0; C is row reduced to the identity provided every row at some point stops
changing in taking the product MR. Since all of the entries of row n of C which are
not congruent to 0 modp� are contained in a Jnite number of columns, any row of C
ceases to change when all the rows of the identity with 1 in those columns have been
obtained in the matrix R. Hence after an inJnite number of steps each row of C will
have stabilized and the stabilized rows of C will form a basis for Z (!) which lifts the
direct sum decomposition.

3. Lattices of commuting idempotents

De=nitions and notation. The following notation will be used, usually without com-
ment, in the rest of this paper.

Let E be a lattice of commuting idempotents in a ring R with 1, that is, E is closed
under multiplication and addition of orthogonal idempotents. The idempotents in E

together with the identity generate a boolean algebra B under multiplication as in R
but in addition the symmetric diIerence e +B f = e(1 − f) + f(1 − e). Let Z[B] be
the semigroup algebra of 〈B; ·〉, that is, the free abelian group with basis the elements
of B and multiplication the multiplication as in B. Let

S = Z[B]=〈(e + f) − e − f: ef = 0〉;
where S is a free lattice ring in the sense that it can be formed for any modular, com-
plemented lattice and has appropriate universal properties with respect to embedding
such lattices in rings.

For convenience, we will assume that E is a Boolean ideal, that is, if f=f2 ∈ ER,
then f ∈ E. This does not change ER.

Elementary properties of S. Much of the known material assumed in this subsection
can be found in graduate level text books such as [3].

The next proposition is essentially a sequence of remarks, included with short proofs.

Proposition 3.1. The following hold for the free lattice ring S:
(a) The additive group of S is torsionfree.
(b) The lattice of idempotent generated ideals of S is isomorphic to B.
(c) Any =nitely generated ideal of S is cyclic and isomorphic to a sum

∑n
i=1 fiS

for some set of orthogonal idempotents {fi}⊆B.
(d) R is an S-module under the map induced by the inclusion of B in R.
(e) The projective dimension of an idempotent generated ideal I of S is greater than

or equal to the projective dimension over R of the module I ⊗S R.

Proof. (a) The kernel of the ring map from Z to S is generated by idempotents and
so pure.
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(b) Any element of S is of the form
∑n

i=1 eini where {ei}⊆B are pairwise orthog-
onal and ni ∈ Z. Assume such an element is idempotent. By the torsionfree property of
〈S;+〉, the ni must be all 1, and e =

∑n
i=1 ei ∈ E. But then the symmetric diIerence

of e and f is the same as in B.
(c) Given a Jnite set of idempotents {ei: 1 ≤ i ≤ n}⊆B, the minimal nonzero

idempotents in the lattice they generate will be pairwise orthogonal and generate the
same lattice. Since S is a quotient of the ring Z[B], any element of S is of the form∑m

j=1 ejnj.
Moreover, if the {ej} happen to be orthogonal, (

∑m
j=1 ejnj)S =

∑m
j=1 (ejnjS).

Now, let I be the Jnitely generated ideal

I =
k∑
i=1


 lj∑

j=1

ei; jni; jS


⊆S:

Split each ei; j into an orthogonal sum of the nonzero minimal elements in the lattice
generated by {ei; j: 1 ≤ j ≤ lj; 1 ≤ i ≤ k}. Collecting multiples of each of these

minimal elements, we get a generator for I of the form
∑k′

i=1 fimi where the {fi} are

pairwise orthogonal idempotents in E. But (
∑k′′

i=1 fimi)S ≈ ⊕k′

i=1 fiS if we ignore
terms with mi = 0.

(d) The obvious map Z[B] → R is a ring homomorphism whose kernel contains

〈(e + f) − e − f : ef = 0〉:
(e) I is a direct limit of idempotent generated cyclics and so Rat. A projective

resolution

· · · → Pi → Pi−1 → · · · → P0 → I → 0

is therefore pure exact. Moreover, since Pi is a projective S-module, Pi ⊗S R is a
projective R-module. Thus,

· · · → Pi ⊗S R → Pi−1 ⊗S R → · · · → P0 ⊗S R → I ⊗S R → 0

is a projective resolution of I ⊗S R. If the kernel of a map Pi → Pi−1 is S-projective,
by pure exactness and the fact that tensoring preserves projectivity we see that the
kernel of Pi ⊗S R → Pi−1 ⊗S R is R-projective. Thus, the S-projective dimension
of I is at most i implies that the R-projective dimension of I ⊗S R is also at most i.

Proposition 3.2. The additive group of S is a free abelian group.

Proof. Let X be the family of all subsets X of B \ {0} such that whenever {ei} is
a set of orthogonal idempotents in X , if {fj} is any set of orthogonal idempotents
such that {ei} �= {fj} and

∑
i ei =

∑
j fj, then at least one fj �∈ X . X is an inductive

poset under ⊆, so by Zorn’s lemma there is a maximal element B in X: B is Z-linearly
independent in S because the only relations on the Z-linearly independent idempotents
in Z[B] set an idempotent equal to an orthogonal sum of other idempotents. B will be
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a vector space basis for B over the Jeld of 2 elements. Let f ∈ B\{0}. If f �∈ B, then
B ∪ {f} �∈ X : Hence there must be a set {ei} of orthogonal idempotents in B ∪ {f}
and a diIerent set {fi}⊆B ∪ {f} of orthogonal idempotents with

∑n
i=1 ei =

∑m
j=1 fj.

If f ∈ {ei} ∩ {fj} then we get
∑

ei �=f ei =
∑

fj �=f fj with all summands in B, a
contradiction. Similarly, if f �∈ {ei} ∪ {fj} we get a contradiction. Hence f is in
precisely one of the two sets, say f = e1. Then f =

∑
j fj −

∑n
i=2 ei is in the span

of B.

Proposition 3.2 strongly reinforces the observation that S is a free object. The basis
found for its additive group will be a basis for S⊗S F over F for any Jeld F .

In his proof of the aCrmative answer to the Wiegand question in the case n = 1,
R.S. Pierce proved the next lemma with completely diIerent terminology. See [9,
Lemma 2:7].

Proposition 3.3. Let {�
} be a set of elements in a submodule of a free S-module
K; where the {�
⊗1} are all nonzero. Then if {�
⊗S R} is R-independent in K⊗S R;
then {�
} is S-independent in K.

Proof. Assume not. Then there is a shortest sum
∑n

i=1 �
i si = 0 where the summands
are all nonzero in (S). Considering elements of the free module K as consisting of
sums of idempotents times basis elements, we see that the annihilator of each �
i si is
generated by an idempotent (1− .i). Since n is the smallest number of summands that
can give you a zero and

∑n
i=1 �
i si.1 = 0, we have �
i si.1 �= 0 for all i. Similarly

�
i si.1.2 �= 0 for all i. Continuing in this manner we get �
i si
∏n

j=1 .j �= 0 for all i.
Then

∑
i �isi

∏n
j=1 .j has all summand nonzero and there is an integer m such that∑n

i=1 �
i sim
−1 ∏n

i=1 .i is an element not divisible by any integers other than ±1 in
the free abelian additive group of K . But then

∑n
i=1 �
i sim

−1 ∏n
i=1 .i ⊗ 1 is nonzero

in K ⊗S R and each of the summands is nonzero.

We quote a proposition due to Kaplansky that is basic to almost all studies of
inJnitely generated projective modules, with two consequences giving rise to the same
result for von Neumann regular rings.

Proposition 3.4 (Kaplansky). A projective module over any ring is a direct sum of
countably generated submodules. From this we obtain
(a) Any projective right module over a von Neumann regular ring is isomorphic to

a direct sum of cyclic (idempotent generated) right ideals.
(b) Any projective module over a commutative semihereditary ring is isomorphic to

a direct sum of =nitely generated right ideals.

See [2] for a proof. The proof of this theorem is the template on which the prelim-
inary proofs in Section 2 are based.

The proof of an aArmative answer to the Wiegand question. We now complete our
work on the Wiegand question.
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Proposition 3.5. Let R be a commutative von Neumann regular ring. Let F be a
projective S-module and let K be any pure submodule of F. Then if K ⊗S R is
projective as an R-module; then K is projective as an S-module.

Proof. Since K ⊗S R is a projective R-module, it is a direct sum of the form K ⊗S

R=
⊕


 x
R where for each 
 there is an e
 such that x
R ≈ e
R. If any e
 is of Jnite
but composite order, express it as an orthogonal sum of idempotents of prime power
order by the Chinese Remainder Theorem. In the von Neumann regular case where
there are no nilpotent elements, the prime power must be the prime itself. We can then
divide the indexing set into a family of subsets

Fp = {
: char(e
 ⊗S R) = p}
for p a prime or 0.

Consider the map K
Ik⊗1−−−→ K ⊗S R → ⊕


∈F0
x
R. Its image is a projective

S-module, so it splits. Hence, without loss of generality we can work with the kernel
of this map in place of K and assume that K ⊗S R is torsion. But then it is the
orthogonal sum of its p-primary components so we need only look at sums of the
form

⊕

∈Fp

x
R for a Jxed prime p. That is, without loss of generality, K ⊗S R is
p-primary. Since the additive group of S is free, the additive group of F is free and
hence K is a subgroup of a free abelian group and so free. By Theorem A, there is a
basis {b�} of K which lifts the direct sum decomposition Gp=pGp =

⊕

∈Fp

x
R to a
direct sum decomposition of K .

For every 
, let B
={b�: b�⊗1 ∈ x
R}. Let H
 be the S-submodule of K generated
by B
. Since the generators of H
 all map to x
R under IdK ⊗ 1R, so must H
. Since
H
 contains B
 and

⋃

 B
 is a basis for K; K =

∑

 H
. By Proposition 3.3, that sum

is direct.
Select any element y in H
 which maps to x
. This y is an element lying in a Jnitely

generated free submodule of F . Hence it is of the form y=
∑m

i=1

∑ki
j=1 ci; jei; jni; j where

the ci; j are basis elements of F , and we can use our little trick of decomposing into
the minimal idempotents in a Jnite lattice to get that ei; j and ek; l are either the same
idempotent or orthogonal. Because of the Z-purity of K , we may Jnd a y
 ∈ H


such that each sum of the form
∑

ei; j=ek; l ci; jei; jni; j is of content 1 and hence this y

generates a direct summand of F . But then y
S is a direct summand of H
 which
maps to the same submodule of K ⊗S R. We conclude that H
 = y
 S for all 
. Thus
K =

⊕

 y
S so K is projective.

Corollary 3.6. Let F be a projective S-module of the form

F =
⊕

∈A

e
S;

where each e
S is isomorphic to an ideal of S contained in ES. Then for any pure
submodule K of F; pdR(K ⊗S R) = pdS(K).

Proof. We can take a short projective resolution of K over S, say

0 → L → P → K → 0
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is exact with P projective and, like F , a direct sum of cyclic projectives of the form
eS for some e ∈ E. Then if we let ∞ − 1 = ∞; pdS(L) = pdS(K) − 1. This short
exact sequence is pure, so tensoring with R over S gives a short projective resolution
of K ⊗S R

0 → L⊗S R → P ⊗S R → K ⊗S R → 0

with pdR(L⊗S R) = pdR(K ⊗S R) − 1. Induction on pdS(K) completes the proof.

Theorem B (The answer to the Wiegand question). For any commutative von Neu-
mann regular ring R with a commuting set of idempotents E; pdR(ER) = pdS(ES) =
pdB(EB).

Proof. ES has a projective resolution of the form required in Corollary 3.6. Then
Corollary 3.6 gives the desired conclusion.

One way to summarize this answer to the Wiegand question is to say that, when
working in a submodule of a free module over a commutative regular ring, the lattice
of direct summands carries all of the information about the module, and the coeCcients
essentially none. For example, note that in Theorem B, the lattices of direct summands
in the three ideals ER; ES, and EB are isomorphic, as they correspond to the idem-
potents themselves. However, as soon as one gets to free modules on more than one
generator, that property fails. Since the number of one-dimensional subspaces of a
two-dimensional vector space depends on the cardinality of the Jeld, if R = S=3S
then the number of direct summands of eR ⊕ eR isomorphic to eR and the number
of direct summands of eB ⊕ eB isomorphic to eB will always be diIerent for any
idempotent e.
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