29 research outputs found

    Actions travel with their objects: evidence for dynamic event files

    Get PDF
    Moving a visual object is known to lead to an update of its cognitive representation. Given that object representations have also been shown to include codes describing the actions they were accompanied by, we investigated whether these action codes β€œmove” along with their object. We replicated earlier findings that repeating stimulus and action features enhances performance if other features are repeated, but attenuates performance if they alternate. However, moving the objects in which the stimuli appeared in between two stimulus presentations had a strong impact on the feature bindings that involved location. Taken together, our findings provide evidence that changing the location of an object leaves two memory traces, one referring to its original location (an episodic record) and another referring to the new location (a working-memory trace)

    EEG Correlates of Attentional Load during Multiple Object Tracking

    Get PDF
    While human subjects tracked a subset of ten identical, randomly-moving objects, event-related potentials (ERPs) were evoked at parieto-occipital sites by task-irrelevant flashes that were superimposed on either tracked (Target) or non-tracked (Distractor) objects. With ERPs as markers of attention, we investigated how allocation of attention varied with tracking load, that is, with the number of objects that were tracked. Flashes on Target discs elicited stronger ERPs than did flashes on Distractor discs; ERP amplitude (0–250 ms) decreased monotonically as load increased from two to three to four (of ten) discs. Amplitude decreased more rapidly for Target discs than Distractor discs. As a result, with increasing tracking loads, the difference between ERPs to Targets and Distractors diminished. This change in ERP amplitudes with load accords well with behavioral performance, suggesting that successful tracking depends upon the relationship between the neural signals associated with attended and non-attended objects

    Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors

    Get PDF
    Multiple-object tracking (MOT) studies have shown that tracking ability declines as object speed increases. However, this might be attributed solely to the increased number of times that target and distractor objects usually pass close to each other (β€œclose encounters”) when speed is increased, resulting in more target–distractor confusions. The present study investigates whether speed itself affects MOT ability by using displays in which the number of close encounters is held constant across speeds. Observers viewed several pairs of disks, and each pair rotated about the pair’s midpoint and, also, about the center of the display at varying speeds. Results showed that even with the number of close encounters held constant across speeds, increased speed impairs tracking performance, and the effect of speed is greater when the number of targets to be tracked is large. Moreover, neither the effect of number of distractors nor the effect of target–distractor distance was dependent on speed, when speed was isolated from the typical concomitant increase in close encounters. These results imply that increased speed does not impair tracking solely by increasing close encounters. Rather, they support the view that speed affects MOT capacity by requiring more attentional resources to track at higher speeds

    Bottlenecks of motion processing during a visual glance: the leaky flask model

    Get PDF
    YesWhere do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.Supported by R01 EY018165 and P30 EY007551 from the National Institutes of Health (NIH)

    Nicotinic Receptor Gene CHRNA4 Interacts with Processing Load in Attention

    Get PDF
    Background: Pharmacological studies suggest that cholinergic neurotransmission mediates increases in attentional effort in response to high processing load during attention demanding tasks [1]. Methodology/Principal Findings: In the present study we tested whether individual variation in CHRNA4, a gene coding for a subcomponent in a4b2 nicotinic receptors in the human brain, interacted with processing load in multiple-object tracking (MOT) and visual search (VS). We hypothesized that the impact of genotype would increase with greater processing load in the MOT task. Similarly, we predicted that genotype would influence performance under high but not low load in the VS task. Two hundred and two healthy persons (age range = 39–77, Mean = 57.5, SD = 9.4) performed the MOT task in which twelve identical circular objects moved about the display in an independent and unpredictable manner. Two to six objects were designated as targets and the remaining objects were distracters. The same observers also performed a visual search for a target letter (i.e. X or Z) presented together with five non-targets while ignoring centrally presented distracters (i.e. X, Z, or L). Targets differed from non-targets by a unique feature in the low load condition, whereas they shared features in the high load condition. CHRNA4 genotype interacted with processing load in both tasks. Homozygotes for the T allele (N = 62) had better tracking capacity in the MOT task and identified targets faster in the high load trials of the VS task. Conclusion: The results support the hypothesis that the cholinergic system modulates attentional effort, and that commo
    corecore