2,468 research outputs found
The Extreme Energy Events HECR array: status and perspectives
The Extreme Energy Events Project is a synchronous sparse array of 52
tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic
Rays-related phenomena. The observatory is also meant to address Long Distance
Correlation (LDC) phenomena: the network is deployed over a broad area covering
10 degrees in latitude and 11 in longitude. An overview of a set of preliminary
results is given, extending from the study of local muon flux dependance on
solar activity to the investigation of the upward-going component of muon flux
traversing the EEE stations; from the search for anisotropies at the sub-TeV
scale to the hints for observations of km-scale Extensive Air Shower (EAS).Comment: XXV ECRS 2016 Proceedings - eConf C16-09-04.
Terahertz Security Image Quality Assessment by No-reference Model Observers
To provide the possibility of developing objective image quality assessment
(IQA) algorithms for THz security images, we constructed the THz security image
database (THSID) including a total of 181 THz security images with the
resolution of 127*380. The main distortion types in THz security images were
first analyzed for the design of subjective evaluation criteria to acquire the
mean opinion scores. Subsequently, the existing no-reference IQA algorithms,
which were 5 opinion-aware approaches viz., NFERM, GMLF, DIIVINE, BRISQUE and
BLIINDS2, and 8 opinion-unaware approaches viz., QAC, SISBLIM, NIQE, FISBLIM,
CPBD, S3 and Fish_bb, were executed for the evaluation of the THz security
image quality. The statistical results demonstrated the superiority of Fish_bb
over the other testing IQA approaches for assessing the THz image quality with
PLCC (SROCC) values of 0.8925 (-0.8706), and with RMSE value of 0.3993. The
linear regression analysis and Bland-Altman plot further verified that the
Fish__bb could substitute for the subjective IQA. Nonetheless, for the
classification of THz security images, we tended to use S3 as a criterion for
ranking THz security image grades because of the relatively low false positive
rate in classifying bad THz image quality into acceptable category (24.69%).
Interestingly, due to the specific property of THz image, the average pixel
intensity gave the best performance than the above complicated IQA algorithms,
with the PLCC, SROCC and RMSE of 0.9001, -0.8800 and 0.3857, respectively. This
study will help the users such as researchers or security staffs to obtain the
THz security images of good quality. Currently, our research group is
attempting to make this research more comprehensive.Comment: 13 pages, 8 figures, 4 table
New Eco-gas mixtures for the Extreme Energy Events MRPCs: results and plans
The Extreme Energy Events observatory is an extended muon telescope array,
covering more than 10 degrees both in latitude and longitude. Its 59 muon
telescopes are equipped with tracking detectors based on Multigap Resistive
Plate Chamber technology with time resolution of the order of a few hundred
picoseconds. The recent restrictions on greenhouse gases demand studies for new
gas mixtures in compliance with the relative requirements. Tetrafluoropropene
is one of the candidates for tetrafluoroethane substitution, since it is
characterized by a Global Warming Power around 300 times lower than the gas
mixtures used up to now. Several mixtures have been tested, measuring
efficiency curves, charge distributions, streamer fractions and time
resolutions. Results are presented for the whole set of mixtures and operating
conditions, %. A set of tests on a real EEE telescope, with cosmic muons, are
being performed at the CERN-01 EEE telescope. The tests are focusing on
identifying a mixture with good performance at the low rates typical of an EEE
telescope.Comment: 8 pages, 6 figures, proceedings for the "XIV Workshop on Resistive
Plate Chambers and Related Detectors" (19-23 February 2018), Puerto Vallarta,
Jalisco State, Mexic
An algorithm to compute the polar decomposition of a 3 × 3 matrix
We propose an algorithm for computing the polar decomposition of a 3 × 3 real matrix that is based on the connection between orthogonal matrices and quaternions. An important application is to 3D transformations in the level 3 Cascading Style Sheets specification used in web browsers. Our algorithm is numerically reliable and requires fewer arithmetic operations than the alternative of computing the polar decomposition via the singular value decomposition
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
A simulation tool for MRPC telescopes of the EEE project
The Extreme Energy Events (EEE) Project is mainly devoted to the study of the
secondary cosmic ray radiation by using muon tracker telescopes made of three
Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a
telescope network mainly distributed across Italy, hosted in different building
structures pertaining to high schools, universities and research centers.
Therefore, the possibility to take into account the effects of these structures
on collected data is important for the large physics programme of the project.
A simulation tool, based on GEANT4 and using GEMC framework, has been
implemented to take into account the muon interaction with EEE telescopes and
to estimate the effects on data of the structures surrounding the experimental
apparata.A dedicated event generator producing realistic muon distributions,
detailed geometry and microscopic behavior of MRPCs have been included to
produce experimental-like data. The comparison between simulated and
experimental data, and the estimation of detector resolutions is here presented
and discussed
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Multiplicity Studies and Effective Energy in ALICE at the LHC
In this work we explore the possibility to perform ``effective energy''
studies in very high energy collisions at the CERN Large Hadron Collider (LHC).
In particular, we focus on the possibility to measure in collisions the
average charged multiplicity as a function of the effective energy with the
ALICE experiment, using its capability to measure the energy of the leading
baryons with the Zero Degree Calorimeters. Analyses of this kind have been done
at lower centre--of--mass energies and have shown that, once the appropriate
kinematic variables are chosen, particle production is characterized by
universal properties: no matter the nature of the interacting particles, the
final states have identical features. Assuming that this universality picture
can be extended to {\it ion--ion} collisions, as suggested by recent results
from RHIC experiments, a novel approach based on the scaling hypothesis for
limiting fragmentation has been used to derive the expected charged event
multiplicity in interactions at LHC. This leads to scenarios where the
multiplicity is significantly lower compared to most of the predictions from
the models currently used to describe high energy collisions. A mean
charged multiplicity of about 1000-2000 per rapidity unit (at ) is
expected for the most central collisions at .Comment: 12 pages, 19 figures. In memory of A. Smirnitski
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
- …
