1,230 research outputs found

    Energy dependence of jet transport parameter and parton saturation in quark-gluon plasma

    Get PDF
    We study the evolution and saturation of the gluon distribution function in the quark-gluon plasma as probed by a propagating parton and its effect on the computation of jet quenching or transport parameter q^\hat{q}. For thermal partons, the saturation scale Qs2Q^2_s is found to be proportional to the Debye screening mass μD2\mu_D^2. For hard probes, evolution at small x=Qs2/6ETx=Q^2_s/6ET leads to jet energy dependence of q^\hat{q}. We study this dependence for both a conformal gauge theory in weak and strong coupling limit and for (pure gluon) QCD. The energy dependence can be used to extract the shear viscosity η\eta of the medium since η\eta can be related to the transport parameter for thermal partons in a transport description. We also derive upper bounds on the transport parameter for both energetic and thermal partons. The later leads to a lower bound on shear viscosity-to-entropy density ratio which is consistent with the conjectured lower bound η/s1/4π\eta/s\geq 1/4\pi. We also discuss the implications on the study of jet quenching at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider and the bulk properties of the dense matter.Comment: 15 pages in RevTex with 9 figures (v4 final published version

    Shock wave loading and spallation of copper bicrystals with asymmetric Σ3〈110〉tilt grain boundaries

    Get PDF
    We investigate the effect of asymmetric grain boundaries (GBs) on the shock response of Cu bicrystals with molecular dynamics simulations. We choose a representative Σ3〈110〉tilt GB type, (110)_1/(114)_2, and a grain size of about 15 nm. The shock loading directions lie on the GB plane and are along [001] and [221] for the two constituent crystals. The bicrystal is characterized in terms of local structure, shear strain, displacement, stress and temperature during shock compression, and subsequent release and tension. The shock response of the bicrystal manifests pronounced deviation from planar loading as well as strong stress and strain concentrations, due to GBs and the strong anisotropy in elasticity and plasticity. We explore incipient to full spallation. Voids nucleate either at GBs or on GB-initiated shear planes, and the spall damage also depends on grain orientation

    Direct shock wave loading of Stishovite to 235 GPa: Implications for perovskite stability relative to an oxide assemblage at lower mantle conditions

    Get PDF
    Pure stishovite and coesite samples with zero porosity and dimensions appropriate for planar shock wave experiments have been synthesized with multi-anvil high-pressure techniques. The equation of state of stishovite is obtained by direct shock wave loading up to 235 GPa: K_(0T) = 306 ± 5 GPa and K'_(0T) = 5.0 ± 0.2 where K_(0T) and K'_(0T) are ambient bulk modulus and its pressure derivative, respectively. The Hugoniots (shock equations of state) for stishovite, coesite and quartz achieve widely differing internal energy states at equal volume and therefore allow us to determine the Gruneisen parameter of stishovite. On the basis of the resulting P-V-T equation of state for stishovite and previous studies on other phases on the MgO-SiO_2 binary, the breakdown reaction of MgSiO_3-perovskite to MgO and SiO_2 was calculated. Our calculations show that perovskite is thermodynamically stable relative to the stishovite and periclase assemblage at lower mantle conditions. We obtain similar results for a range of models, despite the appreciable differences among these experiment-based thermodynamic parameters

    Decoding the Encoding of Functional Brain Networks: an fMRI Classification Comparison of Non-negative Matrix Factorization (NMF), Independent Component Analysis (ICA), and Sparse Coding Algorithms

    Full text link
    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet mathematical constraints such as sparse coding and positivity both provide alternate biologically-plausible frameworks for generating brain networks. Non-negative Matrix Factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks for different constraints are used as basis functions to encode the observed functional activity at a given time point. These encodings are decoded using machine learning to compare both the algorithms and their assumptions, using the time series weights to predict whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. For classifying cognitive activity, the sparse coding algorithm of L1L1 Regularized Learning consistently outperformed 4 variations of ICA across different numbers of networks and noise levels (p<<0.001). The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy. Within each algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<<0.001). The success of sparse coding algorithms may suggest that algorithms which enforce sparse coding, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA

    Anisotropic shock response of columnar nanocrystalline Cu

    Get PDF
    We perform molecular dynamics simulations to investigate the shock response of idealized hexagonal columnar nanocrystalline Cu, including plasticity, local shear, and spall damage during dynamic compression, release, and tension. Shock loading (one-dimensional strain) is applied along three principal directions of the columnar Cu sample, one longitudinal (along the column axis) and two transverse directions, exhibiting a strong anisotropy in the response to shock loading and release. Grain boundaries (GBs) serve as the nucleation sites for crystal plasticity and voids, due to the GB weakening effect as well as stress and shear concentrations. Stress gradients induce GB sliding which is pronounced for the transverse loading. The flow stress and GB sliding are the lowest but the spall strength is the highest, for longitudinal loading. For the grain size and loading conditions explored, void nucleation occurs at the peak shear deformation sites (GBs, and particularly triple junctions); spall damage is entirely intergranular for the transverse loading, while it may extend into grain interiors for the longitudinal loading. Crystal plasticity assists the void growth at the early stage but the growth is mainly achieved via GB separation at later stages for the transverse loading. Our simulations reveal such deformation mechanisms as GB sliding, stress, and shear concentration, GB-initiated crystal plasticity, and GB separation in nanocrystalline solids under shock wave loading

    Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates

    Get PDF
    We show that single component metallic glasses can be synthesized by thermal spray coating of nanodroplets onto an amorphous substrate. We demonstrate this using molecular dynamics simulations of nanodroplets up to 30 nm that the spreading of the nanodroplets during impact on a substrate leads to sufficiently rapid cooling (10^(12)–10^(13) K/s) sustained by the large temperature gradients between the thinned nanodroplets and the bulk substrate. However, even under these conditions, in order to ensure that the glass transition outruns crystal nucleation, it is essential that the substrate be amorphous (eliminating sites for heterogeneous nucleation of crystallization)

    Experimental Investigation of Blast-Pressure Attenuation by Cellular Concrete

    Get PDF
    Results from an experimental investigation of the dynamic response of cellular concrete subjected to blast-pressure loading are presented. The cellular concrete has large entrained porosity in the form of uniformly distributed air cells in a matrix of hardened cement. Under quasi-static loading, once the applied stress exceeds the crushing strength of the cellular concrete, crushing and densification of material results in an upward concave stress-strain response. The shock-tube experimental test setup used for generating blast-pressure loading in a controlled manner is described. Experimental results from the cellular concrete subjected to blast-pressure loading with pressure amplitude greater than its crushing strength indicate that a compression stress wave, which produces compaction of the material due to collapse of the cellular structure, is produced in the material. As the compaction front propagates in the material, there is a continuous decrease in its amplitude. The impulse of the blast pressure wave is conserved. When a sufficient length of the cellular concrete is present, the applied blast pressure wave is completely attenuated to a rectangular stress pulse. The transmitted stress to a substrate from cellular concrete when an applied blast pressure wave is completely attenuated resembles a rectangular stress pulse of amplitude slightly higher than the crushing strength of the material with a duration predicted by the applied blast impulse

    Modified Fragmentation Function from Quark Recombination

    Full text link
    Within the framework of the constituent quark model, it is shown that the single hadron fragmentation function of a parton can be expressed as a convolution of shower diquark or triquark distribution function and quark recombination probability, if the interference between amplitudes of quark recombination with different momenta is neglected. The recombination probability is determined by the hadron's wavefunction in the constituent quark model. The shower diquark or triquark distribution functions of a fragmenting jet are defined in terms of overlapping matrices of constituent quarks and parton field operators. They are similar in form to dihadron or trihadron fragmentation functions in terms of parton operator and hadron states. Extending the formalism to the field theory at finite temperature, we automatically derive contributions to the effective single hadron fragmentation function from the recombination of shower and thermal constituent quarks. Such contributions involve single or diquark distribution functions which in turn can be related to diquark or triquark distribution functions via sum rules. We also derive QCD evolution equations for quark distribution functions that in turn determine the evolution of the effective jet fragmentation functions in a thermal medium.Comment: 23 pages in RevTex with 8 postscript figure

    AZI23'UTR Is a New SLC6A3 Downregulator Associated with an Epistatic Protection Against Substance Use Disorders

    Get PDF
    Regulated activity of SLC6A3, which encodes the human dopamine transporter (DAT), contributes to diseases such as substance abuse disorders (SUDs); however, the exact transcription mechanism remains poorly understood. Here, we used a common genetic variant of the gene, intron 1 DNP1B sequence, as bait to screen and clone a new transcriptional activity, AZI23'UTR, for SLC6A3. AZI23'UTR is a 3' untranslated region (3'UTR) of the human 5-Azacytidine Induced 2 gene (AZI2) but appeared to be transcribed independently of AZI2. Found to be present in both human cell nuclei and dopamine neurons, this RNA was shown to downregulate promoter activity through a variant-dependent mechanism in vitro. Both reduced RNA density ratio of AZI23'UTR/AZI2 and increased DAT mRNA levels were found in ethanol-naive alcohol-preferring rats. Secondary analysis of dbGaP GWAS datasets (Genome-Wide Association Studies based on the database of Genotypes and Phenotypes) revealed significant interactions between regions upstream of AZI23'UTR and SLC6A3 in SUDs. Jointly, our data suggest that AZI23'UTR confers variant-dependent transcriptional regulation of SLC6A3, a potential risk factor for SUDs
    corecore