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We study the evolution and saturation of the gluon distribution function in the quark-gluon
plasma as probed by a propagating parton and its effect on the computation of jet quenching or
transport parameter q̂. For thermal partons, the saturation scale Q2

s is found to be proportional to
the Debye screening mass µ2

D. For hard probes, evolution at small x = Q2

s/6ET leads to jet energy
dependence of q̂. We study this dependence for both a conformal gauge theory in weak and strong
coupling limit and for (pure gluon) QCD. The energy dependence can be used to extract the shear
viscosity η of the medium since η can be related to the transport parameter for thermal partons in
a transport description. We also derive upper bounds on the transport parameter for both energetic
and thermal partons. The later leads to a lower bound on shear viscosity-to-entropy density ratio
which is consistent with the conjectured lower bound η/s ≥ 1/4π. Implications on the study of jet
quenching at RHIC and LHC and the bulk properties of the dense matter are discussed.

I. INTRODUCTION

Experimental data from the Relativistic Heavy-ion
Collider (RHIC) have shown significant suppression of
both high transverse momentum single inclusive hadron
spectra and back-to-back dihadron correlation in cen-
tral high-energy heavy-ion collisions [1, 2, 3]. The ob-
served jet quenching phenomena can be attributed to
parton energy loss and medium modification of the effec-
tive parton fragmentation functions [4, 5, 6] due to gluon
bremsstrahlung induced by multiple parton scattering.

Within the picture of multiple parton scattering in
QCD, the energy loss for an energetic parton propagat-
ing in a dense medium is dominated by induced gluon
bremsstrahlung. Taking into account of the non-Abelian
Landau-Pomeranchuck-Midgal (LPM) interference, the
radiative parton energy loss [7],

∆E =
αsNc

4
q̂RL

2, (1)

is found to depend quadratically on the medium length
L and a jet transport or energy loss parameter,

q̂R = ρ

∫
dq2T

dσR

dq2T
q2T , (2)

which describes the averaged transverse momentum
transfer squared per unit distance (or mean-free-path).
Here R is the color representation of the propagating
parton in SU(3) and ρ is the color charge density of
the medium. According to this picture, jet quenching
as observed in high-energy heavy-ion collisions is a direct
measurement of the jet transport parameter q̂R in dense
medium which not only characterizes the color charge
density but also the interaction strength between the
propagating parton and the medium.

Phenomenological studies based on variations of the
parton energy loss picture [8, 9, 10, 11] all indicate the
formation of an extremely high density matter in the
initial stage of high-energy heavy-ion collisions at the

RHIC energy. The averaged transport parameter ex-
tracted from different phenomenological studies of the
single inclusive high pT hadron suppression in the most
central Au + Au collisions at RHIC is [12] q̂F ∼ 1 − 15
GeV2/fm (for a propagating quark) at an initial time
τ0 = 1 fm/c. A recent simultaneous fit of the next-
to-leading order (NLO) pQCD calculation to both sin-
gle and back-to-back dihadron suppression [13] narrows
the uncertainty to q̂F = 1.1 − 1.4 GeV2/fm, which is
still about 100 times higher than that in a cold nucleus
q̂F ≈ 0.013 GeV2/fm as extracted from leading hadron
suppression in deeply inelastic scattering off large nuclei
[14].

In most of the theoretical studies of parton energy
loss [7, 15, 16, 17, 18], except the twist-expansion ap-
proach [19], a static potential model for jet interaction
with the medium was assumed which led to the factor-
ized dependence of parton energy loss on the transport
parameter q̂R in Eq. (1). In this static potential model,
energy and longitudinal momentum transfer between a
jet parton and the medium is ignored. Therefore, elastic
energy loss due to the recoil of the medium parton dur-
ing the jet-medium interaction is neglected in the cal-
culation of radiative parton energy loss. Furthermore,
the static potential model does not include the effect of
inelastic break-up (or parton radiation) of the medium
partons which can give rise to jet energy dependence of
the transport parameter q̂R. In a dynamical picture, the
transport parameter can be related to gluon distribution
density of the medium [7]. The jet energy dependence
of the transport parameter is then directly related to the
scale and momentum fraction dependence of the gluon
distribution density. Understanding the jet energy de-
pendence of the transport parameter not only helps us
to improve the phenomenological study of experimental
data on jet quenching but also provides additional infor-
mation about the structure of the dense quark-gluon mat-
ter in heavy-ion collisions. Furthermore, as illustrated in
a recent study [20], the low energy limit (E ∼ T temper-
ature of the medium) of the transport parameter in jet
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quenching is directly related to the shear viscosity of the
quark-gluon matter in a transport description. There-
fore, experimental and theoretical study of the jet energy
dependence of the transport parameter will be able to
provide another piece of important information on bulk
properties of the dense medium.

Recently, the transport parameter q̂R has also been
calculated for a strongly coupled N = 4 supersymmetric
Yang-Mills (SYM) theory in different limiting scenarios.
With a definition in terms of an adjoint Wilson loop along
the light-cone, Liu, Rajagopal and Wiedemann [21] found
that q̂A in the large limit of the t’ Hooft coupling λ =
Ncg

2 in SYM,

q̂A =
π3/2Γ(3/4)

Γ(5/4)

√
λT 3, (3)

scales with the temperature cubed and is independent of
the jet (propagating parton) energy. In another limit for
a slowly moving heavy quark, the transport parameter,
as defined in Eq. (2), is found [22, 23],

q̂F = 2π
√
λγT 3, (4)

to depend on the square-root of the heavy-quark energy,
where γ = E/M < (M/

√
λT )2. It is not clear how these

two results are related to each other, though both de-
scribe the transport properties in a SYM theory.

In this paper, we investigate the jet energy dependence
of the transport parameter q̂R within perturbative QCD
(pQCD). We will first re-exam the relationship between
the transport parameter and the unintegrated gluon dis-
tribution function of the color charges in the medium
and how they are related to parton energy loss in the
medium. For energetic jet partons, there are large log-
arithms of both momentum scale and small momentum
fraction. They allow us to take double logarithmic ap-
proximation (DLA) and resum gluon radiation of the tar-
get color charges to all orders. The initial condition to
such a resumed evolution of the gluon distribution can
be calculated perturbatively within pQCD at finite tem-
perature with hard thermal loop (HTL) resummation.
From such resumed gluon distribution one can further
take into account gluon saturation and calculate the sat-
uration scale self-consistently which will determine the
transport parameter and its jet energy dependence.

II. PARTON ENERGY LOSS, GLUON

DISTRIBUTION FUNCTION AND

TRANSVERSE MOMENTUM BROADENING

Multiple parton scattering within the high-twist ex-
pansion framework [24] can go beyond the static potential
model and include energy and longitudinal momentum
transfer in the calculation of medium modified fragmen-
tation functions. The total energy loss for a propagating
parton in a deeply inelastic scattering (DIS) off a large

nucleus due to secondary quark-gluon scattering in this
framework can be expressed as [19]

∆E

E
= Ncαs

2αsCR

N2
c − 1

∫
d2qT
(2π)2

∫
dℓ2T

∫ 1

0

dz

× 1 + (1 − z)2

ℓ2T (ℓ2T + µ2
T )

TA
qg(xB , xL, qT )

fA
q (xB)

, (5)

where

xL =
ℓ2T

2z(1 − z)p · k , xT =
q2T − 2qT · ℓT
2(1 − z)p · k , (6)

p = [0, p−, 0T ] is the initial quark momentum, k =
[k+, 0, 0T ] is the momentum per nucleon in the medium,
qT is the transverse momentum of the gluon exchange
with the medium, ℓT is the transverse momentum and z
is the fractional longitudinal momentum carried by the
radiated gluon. The quark distribution function fA

q (xB)
represents the production rate of the initial quark in
DIS. Eq. (5) is derived for quark energy loss and one
can extend it for gluon by replacing the corresponding
Casimir factor CR for gluons. In the collinear expansion
of the twist expansion approach, one normally makes
Taylor expansion of the hard partonic parts in qT and
only the quadratic terms lead to the twist-four contri-
bution. One can, however, approximate higher twist
contributions from the qT -dependence of the hard par-
tonic part of the multiple scattering by using the average
value 〈q2T 〉 = µ2

T in the cross section. As an extension
of the twist expansion, we keep the integration over the
gluon’s transverse momentum. The unintegrated quark-
gluon correlation function is defined as,

TA
qg(x, xL, qT ) =

∫
dy−0
2π

dy−1 dy
−
2 d

2ξT e
i(x+xL)k+y−

0

×(1 − e−ixLk+y−

2 )(1 − e−ixLk+(y−

0 −y−

1 ))

×eixT k+ξ−−iqT ·ξT θ(−y−2 )θ(y−0 − y−1 )

×〈A|ψ̄q(0)
γ+

2
F +

σ (y−2 )F+σ(y−1 )ψq(y
−
0 )|A〉, (7)

where ξ = y1 − y2.

Even though the above parton energy loss is derived
for quark production and propagation in DIS, it is also
valid for high-energy heavy-ion collisions. In the later
case, we assume the life-time of the quark-gluon plasma
to be much longer than its formation time and expansion
time scale and therefore can treat thermal partons inside
the produced dense matter as in asymptotic states. One
therefore can neglect correlation between the initial pro-
duction rate of the jet parton and the quark and gluon
density of the produced medium. The quark-gluon cor-
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relation function will then take a factorized form,

TA
qg(x, xL, qT )

fA
q (x)

=

∫
dy−

∫
d3k

(2π)32k+
f(k, y)dξ−d2ξT

×eixT k+ξ−−iqT ·ξT 〈k|F +
σ (y−2 )F+σ(y−1 )|k〉 ,

×
[
1 − e−ixLk+y−

+ eixLk+ξ−

(1 − eixLk+y−

)
]

= π

∫
dy−

∫
d3k

(2π)3
f(k, y)

[
1 − cos(xLk

+y−)
]

× [φk(xT , qT ) + φk(xT + xL, qT )] , (8)

where f(k, y) is the local phase space distribution of the
color sources in the medium and φk(x, qT ) is the uninte-
grated gluon distribution function per color source,

φk(x, qT ) =

∫
dξ−

2πk+
d2ξT e

ixk+ξ−−iqT ·ξT

×〈k|F σ+(0)F+
σ (ξ−, ξT )|k〉 . (9)

One can define a generalized jet transport parameter,

q̂R(E, xL, y) =
4π2αsCR

N2
c − 1

∫
d3k

(2π)3
f(k, y)

×
∫

d2qT
(2π)2

φk(xT + xL, qT ), (10)

which includes the extra longitudinal momentum trans-
fer xL from the medium to the propagating parton and
radiated gluon. The transport parameter in the static po-
tential model corresponds to the special case with zero
fractional momentum transfer due to gluon radiation,
q̂R(E, y) = q̂R(E, xL = 0, y).

With the above definition of generalized transport pa-
rameter, one can express the total parton energy loss
from Eq. (5) as

∆E

E
=
αsNc

2π

∫
dy−dzdℓ2⊥

1 + (1 − z)2

ℓ2T (ℓ2T + µ2
T )

[q̂R(E, 0, y)

+q̂R(E, xL, y)]
1

2
sin2

[
ℓ2T y

−

2Ez(1 − z)

]
. (11)

The first term that is proportional to the static transport
parameter q̂R(E, x = 0, y) corresponds to the regular ra-
diative energy loss. The second term with the generalized
transport parameter involves energy transfer between the
propagating parton and the medium. It contains what is
normally defined as pure elastic energy loss [25].

Completing the integration over the phase-space of the
radiated gluon, one can recover from the first term a sim-
ilar form of total radiative energy loss in a static and uni-
form medium with finite length as in Eq. (1). However,
one needs to know the x dependence of the unintegrated
gluon distribution function in order to calculate the “elas-
tic” part of the energy loss. Furthermore, the transport
parameter as defined in Eq. (2) should have some non-
trivial jet energy (E) and temperature (T ) dependence.

Within the framework of twist expansion, the trans-
verse momentum broadening of the quark jet has also

been calculated [26],

〈∆p2
T 〉 =

4παsCR

N2
c − 1

TA
qg(x, 0)

fA
q (x)

=

∫
dy− q̂R(E, 0, y). (12)

We can see that the static transport parameter as de-
fined in Eq. (10) in terms of the unintegrated gluon dis-
tribution density of the medium is also the transverse
momentum broadening per unit length for the propagat-
ing parton, as defined in Eq. (2). Resummation of higher
twist contributions leads to a diffusion equation for the
transverse momentum distribution in which the above is
the averaged transverse momentum broadening [27]. For
the remainder of this paper we will focus on the static
transport parameter q̂R and we will suppress the space
and time dependence to simplify the notation.

III. GLUON DISTRIBUTION IN A

QUARK-GLUON PLASMA

As shown in Eq. (10), the transport parameter q̂R
experienced by a propagating parton can be defined in
terms of the unintegrated gluon distributions φk(x, q2T )
of the color sources in the quark-gluon plasma. After av-
eraging over the momentum of the color sources, it can
be expressed as,

q̂R =
4π2CR

N2
c − 1

ρ

∫ µ2

0

d2qT
(2π)2

∫
dx

×δ(x− q2T
2p−〈k+〉 )αs(q

2
T )φ(x, q2T ), (13)

where 〈k+〉 is the average energy of the color sources and
φ(x, q2T ) is the corresponding average unintegrated gluon
distribution function per color source. The integrated
gluon distribution is

xG(x, µ2) =

∫ µ2

0

d2qT
(2π)2

φ(x, qT ). (14)

We have extended our earlier definition of q̂R to include
the case of a running strong coupling constant αs in
QCD. We will refer to the case of fixed coupling constant
as conformal gauge theory. However, for any scale below
the temperature µ2 ≤ T 2 we will consider αs frozen and
treat it as a constant.

Consider the lowest order parton-parton small angle
scattering, we can obtain q̂R as,

q̂R =
∑

b

νbg
4CRb

∫
d3k

(2π)3
fb(k)(1 ± fb(k

′))q2T |MRb|2

× d3k′

(2π)3
d3p′

(2π)3
(2π)4δ4(p+ k − p′ − k′), (15)

where MRb is the truncated parton-parton scattering
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matrix element,

MRb ≈
[

1

q2 + µ2
DπL(xq)

− (1 − x2
q) cosφ

q2(1 − x2
q) + µ2

DπT (xq) + µ2
mag

]
, (16)

where cosφ = (~v × ~q) · (~vb × ~q)/q2 , xq = q0/q
and µ2

D = g2(Nc + nf/2)T 2/3 is the Debye screen-
ing mass in thermal QCD medium with temperature
T and µmag ≈ Ncg

2/2π is the non-perturbative mag-
netic screening mass [28, 29, 30] . The color factors
for different scatterings are Cqq = CF /2Nc, Cqg = 1/2,
Cgg = N2

c /(N
2
c −1). The statistical factor νb is 2(N2

c −1)
for gluons and 4Ncnf for nf flavors of quarks. We use an
effective gluon propagator to include the resummation of
hard thermal loops (HTL) [31]. The scaled self-energies
in the effective propagator in the long-wavelength limit
are given by [32],

πL(xq) = 1 − xq

2
ln

(
1 + xq

1 − xq

)
+ i

π

2
xq , (17)

πT (xq) =
x2

q

2
+
xq

4
(1 − x2

q) ln

(
1 + xq

1 − xq

)

−iπ
4
xq(1 − x2

q) . (18)

One can rewrite the phase-space integration in Eq (15)
as

∫
d3k′

(2π)3
d3p′

(2π)3
(2π)4δ4(p+ k − p′ − k′)

=
1

(2π)2

∫
dxd2qT δ(x− q2T

2p−k+
), (19)

where x = q+/k+. For small angle scattering, one can
set q2 ≈ q2T and xq ≈ xk+/qT . We further approximate
k+ by its average value 〈k+〉 = 3T in the scattering ma-
trix. Note that energy-momentum conservation fixes the
relative angle between k and q. Therefore, the angular
phase-space for k is only 2π. One can complete the rest of
the phase-space integration over the initial momentum,

∫
k2dk

4π2
fb(k)(1 ± fb(k

′)) ≈
∫
k2dk

4π2
fb(k)(1 ± fb(k))

=
T 3

12
(gluons) or

T 3

24
(quarks). (20)

Using

1

2
CRqνq + CRgνg = 2NcCR(1 +

nf

2Nc
) , (21)

and

ρ =
T 3

π2
ζ(3)(νg+

3νq

4
) = 2(N2

c −1)(1+
3nf

4CF
)
T 3

π2
ζ(3), (22)

one can express Eq. (15) as

q̂R =
4π2αsCR

N2
c − 1

ρNc
αs

2π

π2

6ζ(3)

1 + nf/2Nc

1 + 3nf/4CF

×
∫
dxdq2T δ(x− q2T

2p−〈k+〉 )q
2
T |MRb|2 . (23)

The factor π2/6ζ(3) comes from the quantum statistics
effect for the final state partons in the scattering pro-
cesses. According to the definition in Eq. (13), one can
obtain the unintegrated gluon distribution function,

φ(x, q2T ) = 2Ncαs
π2

6ζ(3)

1 + nf/2Nc

1 + 3nf/4CF
|MRb|2q2T , (24)

in a quark-gluon plasma and the integrated gluon distri-
bution function is

xG(x, µ2) =
Ncαs

2π

π2

6ζ(3)

1 + nf/2Nc

1 + 3nf/4CF

×
∫ µ2

0

dq2T |MRb|2q2T . (25)

For typical x ≈ µ2
D/18T 2 = Ncg

2/54, one can take

small xq = 3xT/qT ≈ (
√
Ncg2/3)/6 ≪ 1 approximation

in Eq. (18) in the weak coupling limit,

πL(xq) ≈ 1 − ix
3πT

2qT
, πT (xq) ≈ −ix3πT

4qT
, (26)

and

φ(x, q2T ) =
2Ncαs

µ2
D

π2

6ζ(3)

1 + nf/2Nc

1 + 3nf/4CF
φ̃(x, yq); (27)

φ̃(x, yq) ≡ µ2
D|MRb|2q2T

≈ y2
q

yq(yq + 1)2 + x29π2T 2/4µ2
D

(28)

+
1

2

y2
q

yq(yq + µ2
mag/µ

2
D)2 + x29π2T 2/16µ2

D

,

where yq = q2T /µ
2
D. For x ≫ 4µmag/π = 2Ncg

2/π2, one
can neglect the magnetic mass and complete the integra-
tion in Eq. (25) and obtain

xG(x, µ2) ≈ Nc
αs

2π

π2

6ζ(3)

1 + nf/2Nc

1 + 3nf/4CF

×
{[

ln(1 +
µ2

µ2
D

) − µ2/µ2
D

1 + µ2/µ2
D

]

×
[
1 − 0.035

3xT

µD

]
e−3xTµD/µ2

+
1

6
ln(1 +

16

9π2

µ6

x2T 2µ4
D

)

}
, (29)

where the first term is an approximation of the numer-
ical integration from the electric part of the interac-
tion for x ≤ 2µD/3πT = 2

√
Ncg2/3/3π. Because of

the static Debye screening, it has a very weak x de-
pendence in this x region, which can be ignored for
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large values of µ/µD ≥ 1. For x ≥ 2
√
Ncg2/3/3π the

electric contribution decreases as (1/3) ln(2µ3/3πxTµ2
D).

The magnetic part of interaction, on the other hand,
has only dynamical screening and therefore lead to the
dominant x dependence of the gluon distribution from
a quark-gluon plasma at small x. However, for x ≤
4µmag/3πT ≈ 2Ncg

2/3π2, the non-perturbative mag-
netic mass [28, 29, 30] µmag ≈ Ncg

2/2π becomes im-
portant. In this region, the logarithmic x-dependence
of the gluon distribution from the magnetic interaction
disappears and is replaced by a constant ln(µ2/µ2

mag).

For large µ2/µ2
D ≫ 1 in the small Ncg

2 ≤ x ≤ √
Nc g

region of a pure gluonic plasma (nf = 0), the gluon dis-
tribution per gluonic color source is then,

xG(x, µ2) ≈ CA
αs

π

π2

6ζ(3)

1

2

[
3

2
ln
µ2

µ2
D

+
1

3
ln
µD

xT

]
, (30)

which is generated from perturbative gluon radiation.
For a pure quark plasma, the corresponding gluon dis-
tribution for each quark color source is

xG(x, µ2) ≈ CF
αs

π

π2

6ζ(3)

1

3

[
3

2
ln
µ2

µ2
D

+
1

3
ln
µD

xT

]
. (31)

For the remainder of this paper, we will focus on a pure
gluonic plasma.

IV. GLUON SATURATION IN A PLASMA

Similar to gluon saturation in a large nucleus at small
x, saturation could also happen in the small x region of
a quark-gluon plasma. The saturation scale is given by
[33]

Q2
s(x) =

4π2Ncαs

N2
c − 1

ρxG(x,Q2
s)min(L,Lc) (32)

where Lc = 1/xT is the coherence length for parton scat-
tering in a thermal medium. Since the HTL resumma-
tion does not include coherence effects, the use of the
gluon distribution in Eq. (30) requires that the mean-
free-path of thermal gluons must be larger than the co-
herence length. Given the perturbative expression of the
mean-free-path [20],

λ−1
f = 〈ρσtr〉 ≈

4ζ(3)

9π
N2

c α
2
sT ln

1

Ncαs
, (33)

this implies,

Lc

λf
=

4ζ(3)

9π

N2
c α

2
s

x
ln

1

Ncαs
≤ 1, (34)

or

x ≥ 4ζ(3)

9π
N2

c α
2
s ln

1

Ncαs
∼ (Ncαs)

2 ln
1

Ncαs
. (35)

s
2lnQ

x1
ln

 

2lnT)2T2g
c

ln(N)2T4g2
c

ln(N

gcN
1ln

2gcN
1ln

4g2
cN
1ln

Saturated

Linear

FIG. 1: Illustration of the hierarchy of the saturation scale
Q2

s(x) below the hard scale µ2 = T 2 in a weak coupling glu-
onic plasma.

In this regime, one can use the perturbative gluon distri-
bution [Eq. (30)] to determine the saturation scale,

Q2
s(x) =

4π2Ncαs

N2
c − 1

ρxG(x,Q2
s)Lc

=
π

x
(Ncαs)

2T 2

[
ln
Q2

s

µ2
D

+
2

9
ln
µD

xT

]
. (36)

Neglecting the logarithmic terms, one can get a simple
expression for the saturation scale in the perturbative
regime,

Q2
s(x)/T

2 ∼ (Ncg
2)2

x
. (37)

Since µ2
D = Ncg

2T 2/3 ∼ Ncg
2T 2, we note the following

hierarchy of the saturation scale in a perturbative gluonic
plasma

Q2
s(x) ∼ (Ncg

2)2T 2 ∼ µ2
mag, for x ∼ 1

Q2
s(x) ∼ Ncg

2T 2 ∼ µ2
D, for x ∼ Ncg

2 ∼ µ2
D

T 2

Q2
s(x) ∼ T 2, for x ∼ N2

c g
4 ∼ µ2

mag

T 2
, (38)

as illustrated in Fig. 1.
In the calculation of q̂R for interaction among thermal

partons, the typical xm = Q2
s/〈ŝ〉 = Q2

s/18T 2. One can
determine the saturation scale at xm from Eq. (36),

Q2
s(xm) ≈ µ2

D

3

2

√
1

π
ln

18T

µD
. (39)

It is interesting to note that the gluon saturation scale
for interaction among thermal partons coincides approxi-
mately with the Debye screening mass. Therefore, resum-
mation of HTL effectively provides some kind of mecha-
nism for gluon saturation in a thermal gluon plasma.
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To obtain the transport parameter q̂R at scale µ2 ≤
T 2 due to interaction with the gluonic color sources via
exchange of HTL gluons, one has to complete the integral
in Eq. (23). A simple integration in Eq. (23) without
considering effect of gluon saturation gives

q̂R ≈ 14

15
πN2

c α
2
sT

3 ln
µ2

µ2
D

, (40)

as obtained by a previous calculation of q̂R with dynamic
screening [34]. One can also obtain the above result from
the integrated gluon distribution

q̂R ≃ 4π2CR

N2
c − 1

ρ
[
xG(x, µ2)

]
x=µ2

D
/µ2 . (41)

In principle, one should take into account the effect of
gluon saturation in evaluating the transport parameter
in the region q2T < Q2

s(x). In this regime, we can follow
KNL model [35] and assume the saturated unintegrated
gluon distribution as a constant in qT ,

φ(x, q2T ) =
2Ncαs

µ2
D

π2

6ζ(3)






φ̃(x,Q2
s/µ

2
D) , q2T < Q2

s ;

φ̃(x, q2T /µ
2
D) , q2T > Q2

s ,

(42)

where φ̃(x, yq) is given by Eq. (28) and the saturation
scale Q2

s(x) is determined by Eq. (36). Using the above
model for gluon distribution in the saturated regime in
Eq. (13), one can evaluate the thermal parton transport
parameter. The result,

q̂R ≈ πN2
c α

2
sT

3 ln
Q2

m

µ2
D

, (43)

with Q2
m = 18T 2, is nearly identifical to Eq. (40).

This is because the dominant contribution to the par-
ton transport parameter comes from q2T > Q2

s for large
Q2

m/µ
2
D > 1 and therefore the effect of gluon saturation

is negligible in the calculation of transport parameter for
thermal partons.

The similarity between results in Eqs. (43) and (40)
is also an indication that saturation effect is already
present in the unintegrated gluon distribution function
φ(x, q2T ) in Eqs. (27) and (28) due to HTL resumma-
tion. One can clearly see this by analysing the uninte-
grated gluon distribution φ(x, q2T ) [Eqs. (27) and (28)] at
x = q2T /〈ŝ〉. For large q2T ≫ µ2

D, φ(x, q2T ) ∼ 1/q2T . The
electric contribution to φ(x, q2T )(x = q2T /〈ŝ〉) reaches its
peak value ∼ Ncαs/µ

2
D at q2T ≈ µ2

D ∼ Q2
s and vanishes

at q2T = 0. Without the magnetic mass, the magnetic
contribution to φ(x, q2T )(x = q2T /〈ŝ〉), however, continues
to increase at q2T < Q2

s ∼ µ2
D and reaches a finite value

φ(x, q2T )(x = q2T /〈ŝ〉) ∼ 1/µ2
D at q2T ≪ µ4

D/T
2. However,

contribution to q̂R from this region of limited phase space
is sub-leading in the leading logarithmic approximation.

V. EVOLUTION OF THE THERMAL GLUON

DISTRIBUTION

The gluon distribution function in Eq. (30) was ob-
tained via parton interaction in a thermal medium with
a HTL resummed gluon propagator and, thus, is only
valid for scales µ2 < T 2 . At larger scales, radiation
of hard modes, i.e., partons with momentum k > T , is
possible. These processes lead to the evolution of the
gluon distribution which in vacuum is governed by the
BFKL/DGLAP equations in the linearized regime. In
the medium this evolution may be modified due to the
interaction of the radiated gluons with thermal partons.
However, since the medium effects are of the order of
µD << T , we neglect those at hard scales and use the
vacuum evolution to determine the gluon distribution.
The previous computation in Eq. (30) serves as an initial
condition of this evolution at µ2 = T 2.

Since we are interested in the determination of q̂R at
large jet energies, we need to know the unintegrated
parton distribution φ(x, q2T ) in Eq. (13) at small x ∼〈
q2T
〉
/6ET . For a large path length, the typical total

momentum transfer, q̂L, which will set the scale of the
process, is also large. This is the regime of the double
logarithmic approximation (DLA), in which the BFKL
and DGLAP equations coincide [36, 37]. In this approx-
imation, all terms enhanced by two large logarithms of
the type

(
αs(k

2)Nc ln
k2

µ2
ln

1

x

)n

, (44)

are resumed. Thus, the DLA approximation is valid if
terms of the above type are larger than those of type

(
αs(k

2)Nc ln
1

x

)n

,

(
αs(k

2)Nc ln
k2

µ2

)n

. (45)

The resummation of the terms in Eq. (44) leads to the
evolution equation,

∂2xG(y, ξ)

∂y ∂ξ
=

1

2
xG(y, ξ) , (46)

where, following Ref. [36], we have defined variables y
and ξ as 1

ξ =

∫ Q2

µ2

dk2

k2

2αs(k)Nc

π
, (47)

y = ln
1

x
. (48)

The asymptotic solution to Eq. (46) leads to a growth of
the gluon distribution function of the order exp(

√
2ξy),

1 The definition we use is slightly different from that of [36] and
is more suitable for the description of a conformal plasma (αs

fixed)
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while resummation of terms in Eq. (45) leads to
exp(αsNcy) and exp(ξ) respectively [36]. Therefore, the
DLA approximation is valid as long as

ξ <<
√
ξy , (49)

αNcy <<
√
ξy . (50)

Note that the definition of ξ allows to describe simulta-
neously the evolution of a conformal and non-conformal
theory. For these two cases we have

ξ(Q2) =






λ̄ ln(Q2/µ2) for fixedαs

2Nc

πb ln ln(Q2/Λ2)
ln(µ2/Λ2) for runningαs

,(51)

where the reduced t’Hooft coupling is λ̄ = 2Ncαs/π and
b = (11Nc − 2Nf)/12π.

The general solution of Eq. (46) can be found by per-
forming a Laplace transformation and is given by [37, 38]

xG(x,Q2) =

∫ a+i∞

a−i∞

dn

2πi
eny+ ξ

2nD(n) , (52)

where a is any real number larger than the real part of
any poles of D(n). The corresponding Laplace trans-
formation D(n) of the gluon distribution in Eq. (30) at
Q2 = µ2 = T 2 (ξ = 0) is:

D(n) =

∫ ∞

0−

dye−nyxG(x, T 2)

=
Ncα

T
s

2π

π2

6ζ(3)

1

3

[
1

n
4 ln

T 2

µ2
D

+
1

n2

]
, (53)

where αT
s is the strong coupling constant αs evaluated

at a scale that is proportional to T 2, since Eq. (30) is
obtained through scattering between thermal partons.

For large yξ values, the integral in Eq. (52) can be
performed by saddle point approximation, yielding

xG(x,Q2) =
Ncα

T
s

2π

π2

6ζ(3)

1

3

e
√

2ξy

√
π(2ξy)1/4

×
[
2 ln

T 2

µ2
D

+
y

(2ξy)1/2

]
. (54)

The above evolved gluon distribution function grows
rapidly (faster than a power) with the rapidity y. Thus,
at large y non-linear effects become important leading to
parton saturation. Similarly, we can determine the sat-
uration scale Q2

s(x) from Eq. (32) with the above gluon
distribution function xG(x,Q),

Q2
s = B(x,Q2

s)min(L,Lc) exp
{√

2ξs y
}
, (55)

where ξs = ξ(Q2
s) and

B(x,Q2
s) =

1

9

π3

ζ(3)

Ncαs(Q
2
s)

N2
c − 1

ρ
Ncα

T
s√

π (2ξs y)
1/4

×
[
2 ln

T 2

µ2
D

+
y

(2ξs y)
1/2

]
. (56)

In solving the self-consistent equation Eq. (55) we will
neglect the weak dependence of B(x,Qs) on x and ξs
and treat it as a constant as compared to the dependence
in the exponent. This is an approximation we will take
throughout this paper.

We now can use the evolved gluon distribution function
in Eq. (54) to compute the jet transport parameter as
defined in Eq. (13). In the linear evolution region (q2T >
Q2

s), the unintegrated parton distribution is computed
by taking the derivative of Eq. (54) with respect to the
scale. Keeping the leading term in ξy (i.e. consider only
the ξy dependence in the exponent) we find

φDLA(x, q2T ) = 4π
∂

∂q2T
xG(x, q2T )

≈ 8
y√
2ξy

αs(q
2
T )Nc

q2T
xG(x, q2T ) . (57)

Using Eq. (32), we find at q2T = Q2
s,

φDLA(x,Q2
s) =

2

π2

N2
c − 1

ρmin(L,Lc)

y√
2ξs y

. (58)

At scales q2T < Q2
s, Eq. (54) is no longer valid since

saturation effects take place which tame the growth of
the gluon distribution function. Inspired by the KLN
model of saturation [35], we use a simplified model for
the unintegrated gluon distribution function

φ(x, q2T ) =






2
π2

N2
c −1

ρ min(L,Lc)
y√

2ξs y
, q2T < Q2

s ;

φDLA(x, q2T ) , q2T > Q2
s .

(59)

We can then express q̂R in Eq. (13) as

q̂R =
CR

Nc

4π2ρ

N2
c − 1

∫
dx

[∫ Q2
s

0

d2qT
(2π)2

δ(x− q2T
Q2

max

)

×αs(q
2
T )NcφDLA(x,Q2

s) +

∫ Q2
max

Q2
s

d2qT
(2π)2

× δ(x − q2T
Q2

max

)αs(q
2
T )NcφDLA(x, q2T )

]
,(60)

where Q2
max ≈ 6ET . Integrating out the δ-function, we

have

q̂R =
CR

Nc

2

π
Q2

max

∫ xm

0

dx
αs(xQ

2
max)Nc

min(L,Lc)

× ln 1
x√

2 ln 1
xξ(xQ

2
max)

+
CR

Nc

4π2ρ

N2
c − 1

×
∫ 1

xm

dxNcαs(xQ
2
max)φDLA(x, xQ2

max), (61)

where xm = Q2
s/Q

2
max.
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VI. CONFORMAL PLASMA

We first examine the behavior of the saturation scale
and jet transport parameter in a medium with fixed cou-
pling constant. For a medium length L that is always
larger than the coherence length for any jet energy, we
find

ln
Q2

s

µ2
∼ ln

1

x
, (62)

for small x. This means that both constraints in Eqs. (49)
and (50) are fulfilled at small coupling λ̄. We can then
use the DLA approximation to describe the evolution of
the gluon distribution function and evaluate the satura-
tion scale and transport parameter at small xm ∼ 1/E.
Note that the eikonal approximation is valid for distances
such that the total momentum transferred to the probe
q̂L≪ Q2

max, since Q2
max is the momentum transfer for a

large angle (90o) scattering. From this requirement and
Eq. (66) we find

λ̄L≪ Lc
Q2

max

Q2
s

, (63)

which is compatible with the weak coupling approxima-
tion and L > Lc if Q2

max ≫ Q2
s.

We determine the saturation scale by solving the self-
consistent equation Eq. (55). Treating B as a constant
and using the definition of ξ for fixed coupling constant
[Eq. (51)] at Q2

s(xm) and xm = Q2
s(xm)/Q2

max, one ob-
tains

ln
Q2

s(xm)

µ2
=

1

2

[
2

2 + λ̄
ln

B

Tµ2
+ ln

Q2
max

µ2

+

√
λ̄

2 + λ̄
ln2 Q

2
max

µ2
− 2λ̄

(2 + λ̄)2
ln2 B

Tµ2

]
. (64)

In the large energy limit, the above solution simplifies to

Q2
s(xm)

µ2
≈
(

B

µ2T

) 1
2+λ̄

(
Q2

max

µ2

) 1
2 + 1

2

q

λ̄
2+λ̄

. (65)

To compute the quenching parameter we study numeri-
cally the integral in Eq. (61) and find that, for the infinite
conformal plasma, it can be well approximated by

q̂R =
CR

Nc

Q2
s(xm)

min(L,Lc(xm))

2

π
αs

(
Q2

s(xm)
)

× Nc ln
1

xm



 δL√
2 ln 1

xm
ξ(Q2

s(xm))

+
1

ξ(Q2
s(xm)) − 2

πNcαs (Q2
s(xm)) ln 1

xm

]
.(66)

This is a very good approximation for values of λ̄ > 1.
For small λ̄ it approximates the exact integral within a

factor 2 as long as λ̄ ln(Q2
max/T

2) > 1. Substituting
Eq. (65) in Eq. (66) we find

q̂R =
CR

Nc
Q2

s(xm)Txm

(
ln 1

xm

ln
x2

mQ2
max

µ2

+
1

2

√
λ̄

2

ln 1
xm√

ln 1
xm

ln
xmQ2

max

µ2


 . (67)

As expected [39], the transport parameter is determined
by the saturation scale.

To determine the dependence on the coupling, we sub-
stitute the definition of B and set µ2 = T 2

q̂R
T 3

=
CR

Nc

(
Q2

max

T 2

)q λ̄
2+λ̄

[
π5/2λ̄5/4(2 + λ̄)1/4

36
√

lnQ2
max/T

2

] 2
2+λ̄

×
(√

2 + λ̄−
√
λ̄
) 4+λ̄

2+λ̄ 1

4

[√
λ̄+

2√
λ̄

]
. (68)

Let us point out two interesting features in the above
result: 1) q̂R grows as a coupling dependent power of the
energy and 2) it depends non analytically on the reduced
t’Hooft coupling λ̄. The non-analyticity is a consequence
of the evolution process.

The derivation of Eq. (68) for a conformal plasma is
strictly valid for small values of λ̄ since both the evolution
equation Eq. (46) and the initial conditions Eq. (30) are
based on perturbation theory. However, in our computa-
tion we have not make any further assumption about the
smallness of λ̄. Given the recent interest in the compu-
tation of transport properties in strongly coupled N = 4
SYM [21, 22, 23, 40, 41], it is still instructive to study
the strong coupling behavior of the jet transport param-
eter. Plotted in Fig. 2 is the jet transport parameter as
a function of the reduced t’Hooft coupling λ̄, normalized
by its large coupling limit,

q̂R(λ̄ = ∞) =
CR

Nc

TQ2
max

4
=
CR

Nc

3T 2E

2
. (69)

The normalized jet transport parameter increases mono-
tonically with the coupling λ̄ and reaches its asymptotic
value in the strong coupling limit. Note also that the
above limit assumes that the energy of the probe is large
such that ln(Q2

max/T
2) >> ln λ̄.

Several comments on this strong coupling limit are in
order:

• In the strong coupling limit, the saturation scale
approaches its maximum limit Q2

s(xm) = Q2
max

and, thus, the eikonal approximation is question-
able. Both the saturation scale and the transport
parameter become independence of the initial con-
dition as contained in B.

• Eq. (69) has a power dependence on the energy of
the probe, and the power becomes coupling inde-
pendent in the strong coupling limit.
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FIG. 2: Normalized jet transport parameter as a function of
reduced t’Hooft coupling λ̄ in a formal plasma for an energetic
porbe of log

10
(Q2

max/T 2) = 90.

• Contribution to Eq. (69) comes completely from
the saturated part of the gluon distribution func-
tion. We have performed a simplified treatment of
this region by considering it constant. This is well
motivated by numerical solutions of the Balitsky-
Kovchegov equations at weak coupling [42, 43].
However, at strong coupling extra dependencies on
the coupling (subleading at weak coupling) may be-
come important.

• We have not considered the evolution of the wave
function of the probe. This is motivated by the
weak coupling picture, in which such evolution is
considered separately as the radiative processes of
the probe and are described by radiative energy
loss. At strong coupling this separation of the
probe and medium evolution becomes ambiguous
and may lead to an extra coupling dependence.

VII. NON-CONFORMAL PLASMA

From the analysis of a conformal plasma with a fixed
coupling we concluded that the saturation scale grows
faster than any logarithmic jet energy dependence. Since
the typical momentum scale is dictated by Q2

s, effects of a
running coupling constant become important in the QCD
plasma for large energy probes. This issue is addressed
by solving numerically Eq. (61) with ξ given by Eq. (51).
In this case we find that Eq. (61) is well approximated

(within 20 %) 2 by

q̂R =
CR

Nc

Q2
s

min(L,Lc)

ln 1
xm

ln
Q2

s(xm)
Λ2

×




δL√
π b

Nc
ln 1

xm
ln
(
ln

Q2
s

Λ2

/
ln µ2

Λ2

)

+
1

ln
(
ln

Q2
s

Λ2

/
ln µ2

Λ2

)
− ln(1/xm)

ln(Q2
s(xm)/Λ2)


 , (70)

where δL = 1/2 if L > Lc and δL = 1 otherwise. As in
the conformal case, q̂R is determined by the saturation
scale, which is given by

Q2
s = B(x,Q2

s)min(L,Lc)

× e

v

u

u

t

4Nc
πb

ln

 

ln
Q2

s

Λ2

/
ln µ2

Λ2

!

ln 1
xm

, (71)

where B(x,Q2
s) is given in Eq. (56) and Lc = 1/xmT =

Q2
s(xm)/Q2

maxT .
As in the conformal case, the saturation scale and jet

transport parameter have a fast growth with the jet en-
ergy. In spite of the fact that the above results are de-
rived with an approximation for asymptotically small x
(which implies large saturation scales), we would like to
make some numerical evaluations of the jet transport pa-
rameter for jet energies accessible at RHIC and LHC and
address the experimental consequences of this growth.

We solve numerically the self-consistent equation
Eq. (71) for the saturation scale Q2

s(xm). In order to
avoid the infrared singularity of αs we regulate the cou-
pling constant as

αs(Q
2) =

1

b

1

ln Q2+T 2

Λ2

. (72)

To be consistent, we also replace

ln

(
ln
Q2

s

Λ2

/
ln
µ2

Λ2

)
→ ln

(
ln
Q2

s + T 2

Λ2

/
ln
µ2 + T 2

Λ2

)
.

The coupling constant at a thermal scale is determined
by solving the coupled equations,

αT
s =

1

b

1

ln
Q2

s(T )+T 2

Λ2

, (73)

Q2
s(T ) = 18π

(Ncα
T
s )2

Q2
s(T )

T 4 , (74)

2 For determinging this expression we assumed that the coher-
ence length is always larger or smaller than the path lenght. In
the numerical coputations presented this is not assumed and the
min() is replaced by a smooth function.
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FIG. 3: Coherence length times temperature as a function of
the energy of the probe for different temperatures.

which are essentially Eq. (36) at x = Q2
s(T )/18T 2 [we

have set the logarithms in Eq. (36) to be of order 1].
Finally, since Eq. (71) is only valid for asymptotically
large rapidities y, we also shift the rapidities to

y → y + y0 , (75)

with y0 = 0.24. This value has been chosen such that
as y decreases we recover the value of the saturation
scale Q2

s(T ). In the following numerical evaluation we
will choose µ2 = T 2 and Λ = 200 MeV.

Since the medium is finite in heavy ion collisions, we
start by studying the coherence length. This is computed
by solving

L2
c ≡ 1

x2
mT

2

=
6E

B
e
−

v

u

u

t

4Nc
πb

ln

 

ln
Q2

s(xm)

Λ2

/
ln µ2

Λ2

!

ln 1
xm

. (76)

This coherent length is used to calculate the saturation
scale for any large medium size L > Lc. For small
medium size, L < Lc, the actual length L is used to
calculate the saturation scale. The coherence length is
plotted in Fig. 3 and it shows a strong energy depen-
dence, as can be inferred from Eq. (76). This strong jet

energy dependence Lc ∼
√
E is approximately indepen-

dent of the evolution of the gluon distribution function,
and stems from the definition of the coherence length
as Lc = 1/xT . As expected from the running coupling,
it does not scale with temperature. For a characteristic
temperature of T = 0.4 GeV in relativistic heavy ion col-
lisions, the coherence length is significant: for a probe
of E = 20 GeV, Lc ≈ 2.5 fm while at E = 100 GeV,
Lc ≈ 4.5 fm, which are comparable with the nuclear size.

When the coherence length becomes comparable to the
medium size a non-trivial length dependence of the sat-
uration scale will arise, since the definition of Q2

s is dif-
ferent for path lengths longer or shorter than the co-
herence length. This is illustrated in Fig. 4 where the
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FIG. 4: Saturation scale as a function of the jet energy.
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FIG. 5: Jet quenching parameter q̂ as a function of the jet en-
ergy. The square (triagle) marks the the value of q̂ for thermal
particle at T = 0.4 GeV (T = 0.6 GeV). Significant correc-
tions to the energy dependence are expected at low energy
which should approach their thermal value at E = 3T .

saturation scale is plotted as a function of the energy
of the probe. When the path length is longer than the
coherence length, Q2

s shows a stronger dependence on
the energy. This is, in fact, driven by the energy de-
pendence of the coherence length, and is mostly inde-
pendent of the evolution of the medium gluon distribu-
tion. When the path length is smaller than the coherence
length we obtain a significant reduction of the saturation
scale and a much weaker dependence on the energy, since
the DLA evolution leads to a growth that is weaker than
a power but faster than a logarithmic dependence. We
note that the gluon saturation scale obtained here for a
gluonic plasma is significantly larger than that in a nu-
cleon, where Q2

s ≈ 1 GeV2 at x ≈ 10−4 [44]. This is a
consequence of the fact that the QGP is a much denser
system than a nucleon or cold nucleus. The saturation
scale in a heavy nucleus is enhanced by a factor of A1/3

and therefore might be large enough to facilitate a pertur-
bative calculation of gluon distributions [45]. However,
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FIG. 6: Saturation scale as a function of the path length for
different probe energies.
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FIG. 7: Jet quenching parameter q̂ as a function of the path
length for different probe energies.

it is still an order of magnitude smaller than in a high
temperature quark-gluon plasma.

In Fig. 5 we show the value of the jet quenching pa-
rameter q̂R from the integration of Eq. (61). For long
path lengths q̂ becomes path length independent. The
leading energy dependencies of both Q2

s and Lc cancel
and the observed energy dependence is a consequence
of the evolution of the medium gluon distribution. At
shorter path lengths, we obtain an enhancement of q̂R as
a consequence of the evolution.

The length dependence of both the saturation scale
and the transport parameter is shown in Figs. 6 and 7
for different energies of the probe. As shown in Fig. 6, the
saturation scale grows as a function of the path length.
However this growth is smaller than linear. Thus, the
transport parameter, as shown in Fig. 7, diverges at
small path length. Note, however, that at very short
path lengths (L≪ λf ) the mean momentum broadening
should vanish, since the probe has no medium to scatter
with. Thus, we expect correction to the small L depen-
dence of both Q2

s and q̂R. Finally, when the path length
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FIG. 8: Jet quenching parameter scaled by ǫ3/4, with ǫ the
energy density.

is larger than the coherence length both quantities be-
come length independent. Note that we have assumed a
simplified transition from the region L < Lc to L > Lc.
This is the reason for the abrupt change in the length
dependence at L = Lc in Figs. 6 and 7.

Let us remark that for path lengths smaller than the
coherence length, the interaction of the probe with the
whole length of the medium is coherent. Thus, if the
length scales of space and time variation are smaller or
comparable to the path length, the analysis of the satu-
ration scales and jet transport parameter should be revis-
ited. This will complicate the phenomenological extrac-
tion of the transport parameter in an expanding medium
with strong spatial variation as in semi-peripheral heavy-
ion collisions.

Because of the running of the coupling constant or the
intrinsic scale (Λ) in QCD as a non-conformal gauge the-
ory, the transport parameter q̂R has a non-trivial tem-
perature dependence. To illustrate this, we plot in Fig. 8
the value of q̂R scaled by the energy density,

ǫ =
8π2

15
T 4 , (77)

to the power of 3/4 for the long path lengths (L > Lc).
The dependence on the temperature is quite strong in the
temperature range showed. This is not surprising since
these temperatures are of the order of Λ and the coupling
constant is very sensitive to the scale. The dependence,
however, becomes weaker at higher temperatures. The
jet energy dependence of the transport parameter is also
stronger at lower temperatures. This, of course, is only a
lower limit, since q̂R is larger for shorter path lengths 3.

3 The initial value of q̂R before evolution is about half that of [46].
The main reason is that we use αs = 0.3 for T = 0.4 GeV while
in [46], αs = 0.5.
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maxE = 2q̂/3E2T as a function of jet
energy E.

VIII. BOUND ON q̂ AND SHEAR VISCOSITY

TO ENTROPY DENSITY RATIO

Following Ref. [20], one can relate the jet quenching
parameter q̂R to the transport mean-free-path of the hard
probe,

λ−1
f ≈ 4ρ

〈ŝ〉

∫
dq2T q

2
T

dσR

dq2T
=

4q̂R(E)

〈ŝ〉 , (78)

where we have used the definition of jet transport pa-
rameter in Eq. (2) and 〈ŝ〉 = Q2

max ≈ 6ET is the average
center-of-mass energy squared of the jet-gluon scatter-
ing. The requirement that the mean-free-path of the hard
probe must be larger than the de Broglie wave length 1/E
will set an upper bound for the energy loss parameter,

q̂R(E) ≤ 〈ŝ〉E
4

=
3E2T

2C
, (79)

where C is a constant on the order of O(1).
We have checked that our numerical solutions of q̂R

indeed satisfy this condition as shown in Fig. 9. For a
conformal plasma, q̂R in Eq. (68) increases monotonically
with the reduced t’Hooft coupling λ̄(see Fig. 2). In the
limit λ̄→ ∞, Q2

s(xm) = Q2
max and the jet transport pa-

rameter q̂R = CRTQ
2
max/4Nc for a gluon jet satisfies the

bound for E ≥ T . Since the strong coupling limit is an
asymptotic behavior, the above bound on the transport
parameter is also satisfied in the weak coupling limit of
a conformal plasma.

For thermal partons with 〈E〉 ∼ 3T , the upper bound
in Eq. (79) becomes

T 3

q̂R(T )
≥ 2

27C
. (80)

According to Ref. [20], one can also relate the shear vis-
cosity to the transport parameter for a thermal parton,

η ≈ 1

3
sTλf ≈ s

3T 3

2q̂R(T )
, or

η

s
≈ 3

2

T 3

q̂R(T )
. (81)

Therefore, the upper bound on the transport parameter
q̂R(T ) also provides a lower bound on the shear viscosity
to entropy density ratio

η

s
≥ 1

9C
. (82)

This is very similar to the bound found by Danielewicz
and Gyulassy [47] from transport theory and the bound
1/4π found in the strong coupling limit of N = 4 SYM
[48].

The upper bound on the transport parameter q̂R in
Eq. (79) and its connection with the shear viscosity in
Eq. (81) are quite general since they do not rely on any
assumption about the nature (perturbative or nonpertur-
bative) of parton interaction inside the medium. They do
rely, however, on a transport description of the plasma
in terms of quasi-particles. Therefore, it is not surpris-
ing that the connection between the transport parameter
and shear viscosity does not hold in the strong coupling
limit of N = 4 SYM theory, since thermal modes in such
a strongly coupled theory cannot be described as quasi-
particles [49].

We should emphasize that the jet transport parame-
ter is an intrinsic property of the medium which could
be dominated by non-perturbative physics. However, in
the case of large saturation scale Q2

s and transverse mo-
mentum transfer, the evolution of the gluon distribution
function and the jet transport parameter should still be
described by perturbative QCD and so is the interaction
between jet and the medium and the radiative energy
loss. Therefore, as far as the transport description of the
dense medium is valid, one can use the energy depen-
dence of the jet (parton) transport parameter q̂R(E) as
determined by jet quenching phenomenology to estimate
the shear viscosity to entropy density ratio via extrapo-
lation.

With a recent phenomenological study of both sin-
gle and dihadron spectra suppression using the next-
to-leading order (NLO) pQCD parton model calculation
[13], the average gluon jet energy loss per unit length in
a 1-d expanding medium is estimated to be

(
dE

dL
)1d ≈ 1.9 − 3.4 GeV/fm, (83)

for E = 10 − 15 GeV, which also includes an empiri-
cal variation with jet energy. Using the relationship be-
tween parton energy loss and the transport parameter in
Eq. (1), one obtains an estimate of the average gluon jet
transport parameter

q̂0(E) =
2

τ0αsNc
(
dE

dL
)1d ≈ 1.0 − 1.9 GeV2/fm (84)

at an initial time τ0 = 1 fm/c. Here, we used αs ≈ 0.24
at Q2

s ≈ 5 GeV2 in a pure gluonic plasma. This roughly
agrees with the numerical calculation in Fig. 7. As shown
in Fig. 5, the energy dependence of q̂R is very weak
for E < 20 GeV and long propagation length. Even
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for short propagation length L ∼ Lc ∼ 2 fm, the en-
ergy dependence is limited to about 25% variation. We
therefore can use the above estimate for thermal parton
transport parameter. Using the same initial temperature
T0 = (337 ± 10) MeV as in Ref. [20], one obtains

η0
s0

≈ 3

2

T 3
0

q̂0(T )
≈ 0.15 − 0.24. (85)

For more consistent analysis, one should consider explicit
energy dependence of the parton energy loss beyond that
in q̂R.

Finally, the requirement that the coherence length is
larger than the mean-free-path of thermal particle sets a
limit on the coupling constant αT

s . Indeed, from Eq. (78)
and Eq. (70) q̂R ≈ xmQ

2
s(xm)T , we find

xm = Qs(xm)/〈ŝ〉 ≤ 1/4 . (86)

This bound is only satisfied at weak coupling

2Ncα
T
s

√
2π ln

1

Ncg2
≤ 1 . (87)

For larger values of the coupling αT
s , coherence effects

in the multiple scattering of thermal particles become
important.

IX. SUMMARY AND DISCUSSIONS

In this paper we have studied the energy dependence
of the jet transport (or quenching) parameter q̂R. By re-
lating q̂R to the unintegrated gluon distribution function
of the plasma we have shown that the energy dependence
of q̂R arises from the evolution of the gluon distribution
function. Thermal quarks and gluons in the plasma play
the same role as the valence quarks of the nucleus and
high energy jets probe their wave functions at small x.
Similar as in a cold nuclear matter, the evolution leads to
a growth in the gluon number which is eventually tamed
by saturation effects. Therefore, the jet transport pa-
rameter, also defined as the momentum broadening per
unit length, is determined by the saturation scale Q2

s.
Using thermal field theory with HTL resummation, we

have derived the gluon distribution function for scales
µ2 < T 2 as probed by the interactions among thermal
partons. For such interaction among thermal partons,
the coherence length is smaller than the mean-free-path
and, thus, the saturation scale grows fast for small x,
Q2

s ∼ 1/x. Remarkably, the saturation scale evaluated
at the typical x of the scattering among thermal partons,
x ≈ Q2

s/4T
2 leads to Q2

s ∼ µ2
D. Therefore, the typical

momentum transfer is of the order of µD as expected.
What is more interesting is that, for large angle scattering
of thermal particles with x ∼ 1, the saturation scales is
of the order of the magnetic mass Q2

s ∼ µ2
mag.

The hard thermal loop result for gluon distribution
function serves as the initial condition of the evolution

of the gluon distribution as probed by an energetic jet.
Since this process involves scales much larger than the
medium scale, we have neglected thermal modification
of the evolution kernel. We then used the double log-
arithmic approximation to describe the evolution in a
conformal theory and in (pure glue) QCD.

For a conformal plasma, both the saturation scale
and the jet transport parameter q̂R grow with energy
as a coupling-dependent power. The evolution leads
to a q̂R which is non-analytic in the t’Hooft coupling
λ = g2Nc. In the large coupling limit, q̂R becomes inde-
pendent of the coupling and grows linearly with E. This
is very different from results obtained in N = 4 SUSY
[21, 22, 23, 40, 41]. As remarkable as this may be, the
analysis we have performed is perturbative in nature and
the extrapolation to infinite coupling might not be justi-
fied.

In the case of (pure glue) QCD, the evolution leads to a
jet energy dependence of the transport parameter that is
stronger than any power of logarithmic dependence. The
saturation effect also gives rise to a non-trivial length de-
pendence of the jet transport parameter. The running
of coupling constant also results in a significant temper-
ature dependence which becomes weaker at higher tem-
peratures. We have numerically evaluated the saturation
scale and jet transport parameter in a temperature range
T = 0.4 − 0.6 GeV that is relevant for relativistic heavy
ion collisions at RHIC and LHC. The growth of q̂R with
jet energy is modest for large medium size L≫ Lc. How-

ever, the energy dependence is significant for L
<∼ Lc.

The obtained transport parameter is also larger than
that computed via perturbation theory without evolu-
tion [46]. For T = 0.4 GeV and E = 10 − 20 GeV, our
computed value q̂R ≈ 1.5 − 2 GeV2/fm for a gluon jet
is in agreement with the results from recent phenomeno-
logical studies of experimental data on jet quenching at
RHIC [11, 12, 13, 50]. It is, however, smaller than the
results from phenomenological studies [10, 51] based on
an implementation of energy loss by Salgado and Wiede-
mann (SW) [52]. A recent study within this model with
explicit space-time dependent profiles of energy density
from 2 and 3-D hydro calculations gives a tranverse aver-
aged q̂R ≈ 4−5 GeV2/fm [53] at initial time τ0 = 1 fm/c.
Inclusion of dihadron suppression in the phenomenolog-
ical study has been shown [13] to greatly improve the
sensitivity of jet quenching to variation of q̂R. It is clear
that inclusion of the energy and length dependence of
the jet transport parameter will also influence the phe-
nomenological study of the jet quenching measurements.

Given the relation between shear viscosity η and trans-
port parameter q̂R(T ) for a thermal parton as derived re-
cently in Ref. [20], the energy dependence of jet transport
parameter determined from theoretical and phenomeno-
logical studies can also be used to estimate the shear
viscosity in the dense matter produced in heavy-ion col-
lisions. This will unify high pT and low pT aspects of
heavy-ion collisions. The later can characterize the col-
lective behavior of the produced dense matter which is
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well described by relativistic hydrodynamics with a negli-
gible shear viscosity [54]. We have also derived an upper
bound on the transport parameter of high energy jets.
This upper bound can lead to a lower bound on the shear
viscosity to entropy density ratio which is consistent with
other transport studies.

The saturation scale in a glue plasma we obtained in
this study is much larger than that in a cold nucleus or
a nucleon at extremely small x. This results from the
high gluon density in a plasma with coherence length
comparable to the medium size. This is quite different
from the analysis of HERA data which leads to a power
dependence of Q2

s on x [44]

Q2
s = 1 GeV

(
3 × 10−4

x

)0.288

, (88)

where the coherence length is much larger than the nu-
cleon size. When the coherence length is comparable
to the medium length, the saturation scale is not lin-
ear with the path length. Thus, instead of using the

phenomenological expression Eq. (88), we used the DLA
approximation to estimate Q2

s. Numerical solutions to
the Balitsky-Kovchegov (BK) equation with running cou-
pling constant [42, 43] show that the unintegrated gluon
distribution is consistent with the DLA asymptotes and
that the saturation scale behaves as Q2

s ∼ exp{∆√
y},

similar to what is expected from the DLA asymptotes.
Note, however, that these conclusions are for large values
of the rapidity, y ∼ 10, while in our case the typical x
probed by high energy jets in the kinematic range rele-
vant to heavy-ion collisions at RHIC and LHC is not very
small, x ∼ 0.1. The large values of x obtained imply that
significant corrections to the obtained behavior may oc-
cur, which could be addressed by a numerical analysis of
the BK equation.
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