478 research outputs found

    Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala

    Get PDF
    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of long-term memories for emotionally arousing experiences but not that for less arousing or neutral information. However, previous studies have not determined the basis of such arousal-induced selectivity. Here we report the finding that endogenous noradrenergic activation of the basolateral complex of the amygdala (BLA) induced by emotional arousal is essential in enabling glucocorticoid memory enhancement. Corticosterone administered immediately after object recognition training enhanced 24-h memory of naΓ―ve male rats but not that of rats previously habituated to the training context in order to reduce novelty-induced emotional arousal. The Ξ²-adrenoceptor antagonist propranolol administered either systemically or into the BLA blocked the corticosterone-induced memory enhancement. Further, in habituated rats, corticosterone activated BLA neurons, as assessed by phosphorylated cAMP response element binding (pCREB) immunoreactivity levels, and enhanced memory only when norepinephrine release was stimulated by administration of the Ξ±2-adrenoceptor antagonist yohimbine. These findings strongly suggest that synergistic actions of glucocorticoids and emotional arousal-induced noradrenergic activation of the BLA constitute a neural mechanism by which glucocorticoids may selectively enhance memory consolidation for emotionally arousing experiences.

    Both Stereoselective (R)- and (S)-1-Methyl-1,2,3,4-tetrahydroisoquinoline Enantiomers Protect Striatal Terminals Against Rotenone-Induced Suppression of Dopamine Release

    Get PDF
    1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is present in the human and rodent brain as a mixture of stereospecific (R)- and (S)-1MeTIQ enantiomers. The racemate, (R,S)-1MeTIQ, exhibits neuroprotective activity as shown in the earlier study by the authors, and In addition, it was suggested to play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. In this article, we investigated the influence of stereospecific enantiomers of 1MeTIQ, (R)- and (S)-1MeTIQ (50Β mg/kg i.p.) on rotenone-induced (3Β mg/kgΒ s.c.) behavioral and neurochemical changes in the rat. In behavioral study, in order to record dynamic motor function of rats, we measured locomotor activity using automated locomotor activity boxes. In biochemical studies, we analyzed in rat striatum the concentration of dopamine (DA) and its metabolites: intraneuronal DOPAC, extraneuronal 3-MT, and final HVA using HPLC with electrochemical detection. Otherwise, DA release was estimated by in vivo microdialysis study. The behavioral study has demonstrated that both acute and repeated (3 times) rotenone administration unimportantly depressed a basic locomotor activity in rat. (R)- and (S)-1MeTIQ stereoisomers (50Β mg/kg i.p.) produced a modest behavioral activation both in naΓ―ve and rotenone-treated rats. The data from ex vivo neurochemical experiments have shown stereospecificity of 1MeTIQ enantiomers in respect of their effects on DA catabolism. (R)-1MeTIQ significantly increased both the level of the final DA metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%). In contrast to that, (S)-1MeTIQ significantly depressed DOPAC, HVA levels (by 60 and 40%, respectively), and attenuated the rate of DA metabolism (by about 60%). On the other hand, both the enantiomers increased the concentrations of DA and its extraneuronal metabolite, 3-MT in rat striatum. In vivo microdialysis study has shown that repeated but not acute administration of rotenone produced a deep and significant functional impairment of striatal DA release. Both (R)- and (S)- stereospecific enantiomers of 1MeTIQ antagonized rotenone-induced suppression of DA release; however, the effect of (R)-1MeTIQ was more strongly expressed in microdialysis study. In conclusion, we suggest that both chiral isomers of 1MeTIQ offer neuroprotection against rotenone-induced disturbances in the function of dopaminergic neurons and (R,S)-1MeTIQ will be useful as a drug with marked neuroprotective activity in the brain

    Patterns and flow in frictional fluid dynamics

    Get PDF
    Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams

    Dichotomy of Tyrosine Hydroxylase and Dopamine Regulation between Somatodendritic and Terminal Field Areas of Nigrostriatal and Mesoaccumbens Pathways

    Get PDF
    Measures of dopamine-regulating proteins in somatodendritic regions are often used only as static indicators of neuron viability, overlooking the possible impact of somatodendritic dopamine (DA) signaling on behavior and the potential autonomy of DA regulation between somatodendritic and terminal field compartments. DA reuptake capacity is less in somatodendritic regions, possibly placing a greater burden on de novo DA biosynthesis within this compartment to maintain DA signaling. Therefore, regulation of tyrosine hydroxylase (TH) activity may be particularly critical for somatodendritic DA signaling. Phosphorylation of TH at ser31 or ser40 can increase activity, but their impact on L-DOPA biosynthesis in vivo is unknown. Thus, determining their relationship with L-DOPA tissue content could reveal a mechanism by which DA signaling is normally maintained. In Brown-Norway Fischer 344 F1 hybrid rats, we quantified TH phosphorylation versus L-DOPA accumulation. After inhibition of aromatic acid decarboxylase, L-DOPA tissue content per recovered TH protein was greatest in NAc, matched by differences in ser31, but not ser40, phosphorylation. The L-DOPA per catecholamine and DA turnover ratios were significantly greater in SN and VTA, suggesting greater reliance on de novo DA biosynthesis therein. These compartmental differences reflected an overall autonomy of DA regulation, as seen by decreased DA content in SN and VTA, but not in striatum or NAc, following short-term DA biosynthesis inhibition from local infusion of the TH inhibitor Ξ±-methyl-p-tyrosine, as well as in the long-term process of aging. Such data suggest ser31 phosphorylation plays a significant role in regulating TH activity in vivo, particularly in somatodendritic regions, which may have a greater reliance on de novo DA biosynthesis. Thus, to the extent that somatodendritic DA release affects behavior, TH regulation in the midbrain may be critical for DA bioavailability to influence behavior

    Microglial activation and chronic neurodegeneration

    Get PDF
    Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurode-generative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-Ξ±, nitric oxide, interleukin-1Ξ², and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype

    ROCK Inhibitor Is Not Required for Embryoid Body Formation from Singularized Human Embryonic Stem Cells

    Get PDF
    We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications

    Dopamine Signaling Is Essential for Precise Rates of Locomotion by C. elegans

    Get PDF
    Dopamine is an important neuromodulator in both vertebrates and invertebrates. We have found that reduced dopamine signaling can cause a distinct abnormality in the behavior of the nematode C. elegans, which has only eight dopaminergic neurons. Using an automated particle-tracking system for the analysis of C. elegans locomotion, we observed that individual wild-type animals made small adjustments to their speed to maintain constant rates of locomotion. By contrast, individual mutant animals defective in the synthesis of dopamine made larger adjustments to their speeds, resulting in large fluctuations in their rates of locomotion. Mutants defective in dopamine signaling also frequently exhibited both abnormally high and abnormally low average speeds. The ability to make small adjustments to speed was restored to these mutants by treatment with dopamine. These behaviors depended on the D2-like dopamine receptor DOP-3 and the G-protein subunit GOA-1. We suggest that C. elegans and other animals, including humans, might share mechanisms by which dopamine restricts motor activity levels and coordinates movement

    Zebrafish Endzone Regulates Neural Crest-Derived Chromatophore Differentiation and Morphology

    Get PDF
    The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology

    Transcriptome Analysis of the Desert Locust Central Nervous System: Production and Annotation of a Schistocerca gregaria EST Database

    Get PDF
    ) displays a fascinating type of phenotypic plasticity, designated as β€˜phase polyphenism’. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology
    • …
    corecore