145 research outputs found

    RNA-Based Detection Does not Accurately Enumerate Living Escherichia coli O157:H7 Cells on Plants

    Get PDF
    The capacity to distinguish between living and dead cells is an important, but often unrealized, attribute of rapid detection methods for foodborne pathogens. In this study, the numbers of enterohemorrhagic Escherichia coli O157:H7 after inoculation onto Romaine lettuce plants and on plastic (abiotic) surfaces were measured over time by culturing, and quantitative PCR (qPCR), propidium monoazide (PMA)-qPCR, and reverse transcriptase (RT)-qPCR targeting E. coli O157:H7 gapA, rfbE, eae, and lpfA genes and gene transcripts. On Romaine lettuce plants incubated at low relative humidity, E. coli O157:H7 cell numbers declined 107-fold within 96 h according to culture-based assessments. In contrast, there were no reductions in E. coli levels according to qPCR and only 100- and 1000-fold lower numbers per leaf by RT-qPCR and PMA-qPCR, respectively. Similar results were obtained upon exposure of E. coli O157:H7 to desiccation conditions on a sterile plastic surface. Subsequent investigation of mixtures of living and dead E. coli O157:H7 cells strongly indicated that PMA-qPCR detection was subject to false-positive enumerations of viable targets when in the presence of 100-fold higher numbers of dead cells. RT-qPCR measurements of killed E. coli O157:H7 as well as for RNaseA-treated E. coli RNA confirmed that transcripts from dead cells and highly degraded RNA were also amplified by RT-qPCR. These findings show that neither PMA-qPCR nor RT-qPCR provide accurate estimates of bacterial viability in environments where growth and survival is limited

    New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials

    Full text link
    We consider the Poisson-Nernst-Planck system which is well-accepted for describing dilute electrolytes as well as transport of charged species in homogeneous environments. Here, we study these equations in porous media whose electric permittivities show a contrast compared to the electric permittivity of the electrolyte phase. Our main result is the derivation of convenient low-dimensional equations, that is, of effective macroscopic porous media Poisson-Nernst-Planck equations, which reliably describe ionic transport. The contrast in the electric permittivities between liquid and solid phase and the heterogeneity of the porous medium induce strongly oscillating electric potentials (fields). In order to account for this special physical scenario, we introduce a modified asymptotic multiple-scale expansion which takes advantage of the nonlinearly coupled structure of the ionic transport equations. This allows for a systematic upscaling resulting in a new effective porous medium formulation which shows a new transport term on the macroscale. Solvability of all arising equations is rigorously verified. This emergence of a new transport term indicates promising physical insights into the influence of the microscale material properties on the macroscale. Hence, systematic upscaling strategies provide a source and a prospective tool to capitalize intrinsic scale effects for scientific, engineering, and industrial applications

    Computer-Assisted Prototyping of Advanced Microsystems

    Get PDF
    Contains reports on five research projects.Defense Advanced Research Projects Agency Contract DABT 63-95-C-0088Stanford Universit

    Factors that affect proliferation of Salmonella in tomatoes post-harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype

    Get PDF
    MAIN OBJECTIVES: Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. EXPERIMENTAL DESIGN: Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey's multiple comparison testing procedure. MOST IMPORTANT DISCOVERIES AND SIGNIFICANCE: The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth

    Biomedical and therapeutic applications of biosurfactants

    Get PDF
    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases and as therapeutic agents due to their antibacterial, antifungal and antiviral activities. Furthermore, their role as anti-adhesive agents against several pathogens illustrate their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction of a large number of hospital infections without the use of synthetic drugs and chemicals. Biomedical and therapeutic perspectives of biosurfactants applications are presented and discussed in this chapter

    Spray Atomization Models in Engine Applications, from Correlations to Direct Numerical Simulations

    No full text
    Sprays are among the very main factors of mixture formation and combustion quality in almost every (IC) engine. They are of great importance in pollutant formation and energy efficiency although adequate modeling is still on development. For many applications, validation and calibration of models are still an open question. Therefore, we present an overview of existing models and propose some trends of improvement. Models are classified in zero dimensional and dimensional classes ranging from simple formulations aimed at close-to-real-time applications to complete detailed description of early atomization stages

    The Factory Integration Roadmap in Semiconductor manufacturing

    No full text
    The International Technology Roadmap for Semiconductors (ITRS) is probably the single most important document governing the direction of the semiconductor manufacturing industry. The Factory Integration (FI) chapter seeks to define a roadmap for semiconductor factories and enterprise systems. This roadmap has gone through a significant revision over the past 2 years with a focus on commonality, integration, and data driven. New sub-chapters have been created for prediction, big data, and control systems architectures. Challenges and potential solutions have been identified for each of these sub-chapters, some of which are common across industries, and others of which are unique to the semiconductor manufacturing industry

    Fonctionnement transitoire et controle de la richesse des moteurs à allumage commandé à injection multipoint Transient Operation and Air-Fuel Ratio Control of Spark-Ignition Port-Injected Engines

    No full text
    Sur les moteurs à allumage commandé à injection multipoint on observe des désadaptations de richesse lors de fonctionnement transitoire. Ces désadaptations sont dues au dépôt, sous forme de film liquide, du carburant injecté dans le collecteur. Elles peuvent être compensées par une gestion adéquate de la masse injectée. Ainsi, afin d'obtenir la masse de carburant qui maintient la richesse constante, nous avons développé un modèle bidimensionnel des écoulements dans le collecteur au cours du cycle moteur. Ce modèle décrit l'écoulement des gaz frais, des gouttes injectées, des gaz brûlés refoulés vers l'admission et du film sur les parois, sur le principe de la séparation des phases. Nous montrons que le modèle reproduit correctement le signal de richesse et comment il permet de supprimer les désadaptations. La mesure de richesse est faite à l'échappement avec une sonde à oxygène dont nous validons le fonctionnement en transitoire avec une corrélation à la pression maximale du cycle dans le cylindre. <br> Air-fuel ratio excursions are observed on port-injected spark ignition engines during transients. This excursions result from the liquid fuel film deposited on intake port. They can be compensated by controlling the injected fuel mass. In order to have the amount of fuel that keeps air-fuel ratio constant, we have developed a 2D model of flows in the intake port during engine cycle. This separate phases model describes the flow of fresh gases, injected droplets, hot burned gases and film on port walls. We show that the model effectively predicts the equivalence ratio and how it allows to eliminate excursions. Equivalence ratio measures are made with an oxygen sensor which functioning is validated during transients by correlating it to maximal pressure during engine cycle

    Fonctionnement transitoire et controle de la richesse des moteurs à allumage commandé à injection multipoint

    No full text
    International audienceSur les moteurs à allumage commandé à injection multipoint on observe des désadaptations de richesse lors de fonctionnement transitoire. Ces désadaptations sont dues au dépôt, sous forme de film liquide, du carburant injecté dans le collecteur. Elles peuvent être compensées par une gestion adéquate de la masse injectée. Ainsi, afin d'obtenir la masse de carburant qui maintient la richesse constante, nous avons développé un modèle bidimensionnel des écoulements dans le collecteur au cours du cycle moteur. Ce modèle décrit l'écoulement des gaz frais, des gouttes injectées, des gaz brûlés refoulés vers l'admission et du film sur les parois, sur le principe de la séparation des phases. Nous montrons que le modèle reproduit correctement le signal de richesse et comment il permet de supprimer les désadaptations. La mesure de richesse est faite à l'échappement avec une sonde à oxygène dont nous validons le fonctionnement en transitoire avec une corrélation à la pression maximale du cycle dans le cylindre
    corecore