1,278 research outputs found

    Spiral arm triggering of star formation

    Get PDF
    We present numerical simulations of the passage of clumpy gas through a galactic spiral shock, the subsequent formation of giant molecular clouds (GMCs) and the triggering of star formation. The spiral shock forms dense clouds while dissipating kinetic energy, producing regions that are locally gravitationally bound and collapse to form stars. In addition to triggering the star formation process, the clumpy gas passing through the shock naturally generates the observed velocity dispersion size relation of molecular clouds. In this scenario, the internal motions of GMCs need not be turbulent in nature. The coupling of the clouds' internal kinematics to their externally triggered formation removes the need for the clouds to be self-gravitating. Globally unbound molecular clouds provides a simple explanation of the low efficiency of star formation. While dense regions in the shock become bound and collapse to form stars, the majority of the gas disperses as it leaves the spiral arm.Comment: 6 pages, 4 figures: IAU 237, Triggering of star formation in turbulent molecular clouds, eds B. Elmegreen and J. Palou

    Cluster Formation in Protostellar Outflow-Driven Turbulence

    Full text link
    Most, perhaps all, stars go through a phase of vigorous outflow during formation. We examine, through 3D MHD simulation, the effects of protostellar outflows on cluster formation. We find that the initial turbulence in the cluster-forming region is quickly replaced by motions generated by outflows. The protostellar outflow-driven turbulence (``protostellar turbulence'' for short) can keep the region close to a virial equilibrium long after the initial turbulence has decayed away. We argue that there exist two types of turbulence in star-forming clouds: a primordial (or ``interstellar'') turbulence and a protostellar turbulence, with the former transformed into the latter mostly in embedded clusters such as NGC 1333. Since the majority of stars are thought to form in clusters, an implication is that the stellar initial mass function is determined to a large extent by the stars themselves, through outflows which individually limit the mass accretion onto forming stars and collectively shape the environments (density structure and velocity field) in which most cluster members form. We speculate that massive cluster-forming clumps supported by protostellar turbulence gradually evolve towards a highly centrally condensed ``pivotal'' state, culminating in rapid formation of massive stars in the densest part through accretion.Comment: 11 pages (aastex format), 2 figures submitted to ApJ

    Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    Get PDF
    We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L_bol = 10 L_sun) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r_k = 3.0. Its derived stellar luminosity (3 L_sun) and stellar radius (3.1 R_sun) are consistent with those of a 0.5 M_sun pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.6 E-6 M_sun / yr onto the protostellar core. We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute signifi- cantly to its near-IR continuum veiling. Its projected rotation velocity v sin i = 50 km / s is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 R_*. It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r_k >= 4.6. Together with its low bolometric luminosity (2 L_sun), this dictates that its central core is very low mass, ~0.1 M_sun.Comment: 14 pages including 9 figures (3 figures of 3 panels each, all as separate files). AASTeX LaTex macros version 5.0. To be published in The Astronomical Journal (tentatively Oct 2002

    Ammonia from cold high-mass clumps discovered in the inner Galactic disk by the ATLASGAL survey

    Full text link
    The APEX Telescope Large Area Survey: The Galaxy (ATLASGAL) is an unbiased continuum survey of the inner Galactic disk at 870 \mu m. It covers +/- 60 deg in Galactic longitude and aims to find all massive clumps at various stages of high-mass star formation in the inner Galaxy, particularly the earliest evolutionary phases. We aim to determine properties such as the gas kinetic temperature and dynamics of new massive cold clumps found by ATLASGAL. Most importantly, we derived their kinematical distances from the measured line velocities. We observed the ammonia (J,K) = (1,1) to (3,3) inversion transitions toward 862 clumps of a flux-limited sample of submm clumps detected by ATLASGAL and extracted 13CO (1-0) spectra from the Galactic Ring Survey (GRS). We determined distances for a subsample located at the tangential points (71 sources) and for 277 clumps whose near/far distance ambiguity is resolved. Most ATLASGAL clumps are cold with rotational temperatures from 10-30 K. They have a wide range of NH3 linewidths, which by far exceeds the thermal linewidth, as well as a broad distribution of high column densities with an NH3 abundance in the range of 5 to 30 * 10^{-8}. We found an enhancement of clumps at Galactocentric radii of 4.5 and 6 kpc. The high detection rate (87%) confirms ammonia as an excellent probe of the molecular content of the massive, cold clumps revealed by ATLASGAL. A clear trend of increasing rotational temperatures and linewidths with evolutionary stage is seen for source samples ranging from 24 \mu m dark clumps to clumps with embedded HII regions. The survey provides the largest ammonia sample of high-mass star forming clumps and thus presents an important repository for the characterization of statistical properties of the clumps and the selection of subsamples for detailed, high-resolution follow-up studies

    The Earliest Phases Of High-Mass Star Formation, As Seen In Ngc 6334 By Herschel -Hobys

    Get PDF
    Aims. To constrain models of high-mass star formation, the Herschel-HOBYS key program aims at discovering massive dense cores (MDCs) able to host the high-mass analogs of low-mass prestellar cores, which have been searched for over the past decade. We here focus on NGC 6334, one of the best-studied HOBYS molecular cloud complexes

    The Intrinsic Shapes of Molecular Cloud Fragments over a Range of Length Scales

    Full text link
    We decipher intrinsic three-dimensional shape distributions of molecular clouds, cloud cores, Bok globules, and condensations using recently compiled catalogues of observed axis ratios for these objects mapped in carbon monoxide, ammonia, through optical selection, or in continuum dust emission. We apply statistical techniques to compare assumed intrinsic axis ratio distributions with observed projected axis ratio distributions. Intrinsically triaxial shapes produce projected distributions which agree with observations. Molecular clouds mapped in 12^{12}CO are intrinsically triaxial but more nearly prolate than oblate, while the smaller cloud cores, Bok globules, and condensations are also intrinsically triaxial but more nearly oblate than prolate.Comment: 12 pages, 11 figures. Version with color figures can be found at http://www.astro.uwo.ca/~cjones/ or http://www.astro.uwo.ca/~basu/. To appear in ApJ, 10 April 2002, v. 569, no.
    • …
    corecore