583 research outputs found
Stability and effective masses of composite-fermions in the first and second Landau Level
We propose a measure of the stability of composite fermions (CF's) at
even-denominator Landau-level filling fractions. Assuming Landau-level mixing
effects are not strong, we show that the CF liquid at in the
Landau level cannot exist and relate this to the absence of a hierarchy of
incompressible states for filling fractions . We find that
a polarized CF liquid should exist at . We also show that, for CF
states, the variation with system size of the ground state energy of
interacting electrons follows that for non-interacting particles in zero
magnetic field. We use this to estimate the CF effective masses.Comment: 9 pages, Revtex, PSIZ-TP-940
Microscopic non-equilibrium theory of quantum well solar cells
We present a microscopic theory of bipolar quantum well structures in the
photovoltaic regime, based on the non-equilibrium Green's function formalism
for a multi band tight binding Hamiltonian. The quantum kinetic equations for
the single particle Green's functions of electrons and holes are
self-consistently coupled to Poisson's equation, including inter-carrier
scattering on the Hartree level. Relaxation and broadening mechanisms are
considered by the inclusion of acoustic and optical electron-phonon interaction
in a self consistent Born approximation of the scattering self energies.
Photogeneration of carriers is described on the same level in terms of a self
energy derived from the standard dipole approximation of the electron-photon
interaction. Results from a simple two band model are shown for the local
density of states, spectral response, current spectrum, and current-voltage
characteristics for generic single quantum well systems.Comment: 10 pages, 6 figures; corrected typos, changed caption Fig. 1,
replaced Fig.
Excitation gaps in fractional quantum Hall states: An exact diagonalization study
We compute energy gaps for spin-polarized fractional quantum Hall states in
the lowest Landau level at filling fractions nu=1/3, 2/5,3/7 and 4/9 using
exact diagonalization of systems with up to 16 particles and extrapolation to
the infinite system-size limit. The gaps calculated for a pure Coulomb
interaction and ignoring finite width effects, disorder and LL mixing agree
with predictions of composite fermion theory provided the logarithmic
corrections to the effective mass are included. This is in contrast with
previous estimates, which, as we show, overestimated the gaps at nu=2/5 and 3/7
by around 15%. We also study the reduction of the gaps as a result of the
non-zero width of the 2D layer. We show that these effects are accurately
accounted for using either Gaussian or z*Gaussian' (zG) trial wavefunctions,
which we show are significantly better variational wavefunctions than the
Fang-Howard wavefunction. For quantum well parameters typical of
heterostructure samples, we find gap reductions of around 20%. The experimental
gaps, after accounting heuristically for disorder,are still around 40% smaller
than the computed gaps. However, for the case of tetracene layers
inmetal-insulator-semiconductor (MIS) devices we find that the measured
activation gaps are close to those we compute. We discuss possible reasons why
the difference between computed and measured activation gaps is larger in GaAs
heterostructures than in MIS devices. Finally, we present new calculations
using systems with up to 18 electrons of the gap at nu=5/2 including width
corrections.Comment: 18 pages, 17 figure
Dynamical Correlations in a Half-Filled Landau Level
We formulate a self-consistent field theory for the Chern-Simons fermions to
study the dynamical response function of the quantum Hall system at .
Our scheme includes the effect of correlations beyond the random-phase
approximation (RPA) employed to this date for this system. The resulting
zero-frequency density response function vanishes as the square of the wave
vector in the long-wavelength limit. The longitudinal conductivity calculated
in this scheme shows linear dependence on the wave vector, like the
experimentals results and the RPA, but the absolute values are higher than the
experimental results.Comment: 4 pages, revtex, 3 figures included. Corrected typo
Second Generation of Composite Fermions in the Hamiltonian Theory
In the framework of a recently developed model of interacting composite
fermions restricted to a single level, we calculate the activation gaps of a
second generation of spin-polarized composite fermions. These composite
particles consist each of a composite fermion of the first generation and a
vortex-like excitation and may be responsible for the recently observed
fractional quantum Hall states at unusual filling factors such as
nu=4/11,5/13,5/17, and 6/17. Because the gaps of composite fermions of the
second generation are found to be more than one order of magnitude smaller than
those of the first generation, these states are less visible than the usual
states observed at filling factors nu=p/(2ps+1). Their stability is discussed
in the context of a pseudopotential expansion of the composite-fermion
interaction potential.Comment: 5 pages, 3 figures; after publication in PRB, we have realized that a
factor was missing in one of the expressions; the erroneous results are now
corrected; an erratum has been sent to PR
Possible composite-fermion liquid as a crossover from Wigner crystal to bubble phase in higher Landau level
The ground state cohesive energies per electron of the composite fermion (CF)
Fermi sea, the Laughlin state and the charge density wave (CDW) at higher
Landau levels (LLs) are computed. It is shown that whereas for LL,
the CDW state is generally more energetically preferable than those of the CF
liquid and the Laughlin liquid, the CF liquid state unexpectedly
has lower ground state energy than that of the CDW state. We suggest this CF
liquid between the Wigner crystal and the bubble phase may lead to the
crossover from the normal integer quantum Hall liquid to the novel re-entrant
integer quantum Hall state observed in the recent magneto-transport
experiments
Anisotropic States of Two-Dimensional Electron Systems in High Landau Levels: Effect of an In-Plane Magnetic Field
We report the observation of an acute sensitivity of the anisotropic
longitudinal resistivity of two-dimensional electron systems in half-filled
high Landau levels to the magnitude and orientation of an in-plane magnetic
field. In the third and higher Landau levels, at filling fractions nu=9/2,
11/2, etc., the in-plane field can lead to a striking interchange of the "hard"
and "easy" transport directions. In the second Landau level the normally
isotropic resistivity and the weak nu=5/2 quantized Hall state are destroyed by
a large in-plane field and the transport becomes highly anisotropic.Comment: 5 pages, 4 figures, minor errors correcte
Charge Density Wave in Two-Dimensional Electron Liquid in Weak Magnetic Field
We study the ground state of a clean two-dimensional electron liquid in a
weak magnetic field where lower Landau levels are completely filled
and the upper level is partially filled. It is shown that the electrons at the
upper Landau level form domains with filling factor equal to one and zero. The
domains alternate with a spatial period of order of the cyclotron radius, which
is much larger than the interparticle distance at the upper Landau level. The
one-particle density of states, which can be probed by tunneling experiments,
is shown to have a pseudogap linearly dependent on the magnetic field in the
limit of large .Comment: Several errors correcte
Unpolarized quasielectrons and the spin polarization at filling fractions between 1/3 and 2/5
We prove that for a hard core interaction the ground state spin polarization
in the low Zeeman energy limit is given by for filling fractions in
the range . The same result holds for a Coulomb
potential except for marginally small magnetic fields. At the magnetic fields
unpolarized quasielectrons can manifest themselves by a characteristic
peak in the I-V characteristics for tunneling between two
ferromagnets.Comment: 8 pages, Latex. accepted for publication in Phys.Rev.
Quasi-particle behavior of composite fermions in the half-filled Landau level
We calculate the effect of infrared fluctuations of the Chern-Simons gauge
field on the single-particle Green's function of composite fermions in the
half-filled Landau level via higher-dimensional bosonization on a curved Fermi
surface. We find that composite fermions remain well-defined quasi-particles,
with an effective mass given by the mean-field value, but with anomalously
large damping and a spectral function that contains considerable weight away
from the quasi-particle peak.Comment: reference added; accepted for publication in Phys. Rev. Let
- …
