Erratum: Second generation of composite fermions in the Hamiltonian theory [Phys. Rev. B 69, 155324 (2004)]

M. O. Goerbig, P. Lederer, and C. Morais Smith (Received 15 September 2004; published 23 December 2004)

DOI: 10.1103/PhysRevB.70.249903

PACS number(s): 73.43.Cd, 71.10.Pm, 99.10.Cd

A factor $n_B^* = 1/2\pi l_B^{*2}$ is missing in Eq. (8). Its corrected version is

$$\mathcal{F}_n^p(q) = n_B^* \sum_{n'=p-n}^{p-1} |\langle n' + n | \overline{\rho}^p(\mathbf{q}) | n' \rangle|^2.$$

This error has led to an overestimation of the screening effect due to inter-composite-fermion-Landau-level excitations. Consequently, screening affects the values of the activation gaps less than originally thought. The corrected values for the gaps with s=1 and p=1 are

$\tilde{s} = 1$	$\tilde{p}=1$	$\widetilde{p}=2$	$\widetilde{s} =$	$\tilde{p}=1$	$\widetilde{p}=2$
ν^{*}	1 + 1/3	1 + 2/5	ν	* 1+1/5	5 1+2/9
ν	4/11	7/19	ν	, 6/17	11/31
Δ^a	0.018	0.0064	Δ	<i>a</i> 0.011	0.0052

and for s=2 and p=1,

$\tilde{s} = 1$	$\widetilde{p} = 1$	$\widetilde{p}=2$	$\tilde{s}=2$	$\widetilde{p} = 1$	$\tilde{p}=2$
ν^{*}	1 + 1/3	1 + 2/5	ν^*	1 + 1/5	1 + 2/9
ν	4/19	7/33	u	6/29	11/53
Δ^a	0.0057	0.0020	Δ^a	0.0041	0.0021

in units of $e^2/\epsilon l_B$.

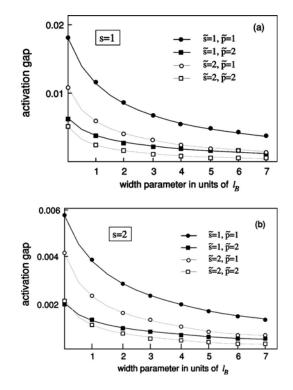


FIG. 1. Activation gaps as a function of width parameter for different fillings. (a) s=1: $\nu=4/11$ (black circles), $\nu=6/17$ (white circles), $\nu=7/19$ (black squares), and $\nu=11/31$ (white squares); (b) s=2: $\nu=4/19$ (black circles), $\nu=6/29$ (white circles), $\nu=7/33$ (black squares), and $\nu=11/53$ (white squares).

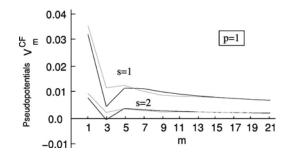


FIG. 2. Haldane's pseudopotentials for *CF* interaction both without screening (black line) and with screening (gray line); the lines are a guide to the eyes.

The corrected figures may be found in Figs. 1 and 2. The theoretical estimate for the activation gap at $\nu = 4/11$ for a width parameter $\lambda \simeq 6.3 l_B$ is $\Delta^a (s=1; \tilde{s}=\tilde{p}=1) \simeq 0.004 e^2/\epsilon l_B$, which is on the order of 600 mK. The characteristic minimum of V_3^{CF} persists even in the presence of screening (Fig. 2). The physical interpretation in the paper remains unchanged.