396 research outputs found

    Fluidized Bed Combustion of Liquid Bio-Fuels: Application of Integrated Diagnostics for Micro-Explosions Characterization

    Get PDF
    A novel integrated diagnostic technique has been developed for the analysis of the “regime with microexplosions” that may be established during the low-temperature (T < 800 °C) fluidized bed combustion of liquid fuels. It consists of the comparison among three analogue data series: (i) pressure signals measured in the freeboard and high-pass filtered, (ii) oxygen molar fractions measured by zirconia-based probes at two elevations in the bed and in the splash region, and (iii) video frames of the bed surface recorded and purposely worked out. The integrated technique has been applied to the combustion of biodiesel at minimum fluidization and has proven to be a valid tool to provide the fingerprints of the mechanism of the low-temperature fluidized combustion of liquid fuels. The time series generated from the measured data sets have been analyzed with the aid of the Hurst’s rescaled range analysis, the V-statistic, and the Lyapunov exponents’ evaluation. The issue of localizing micro-explosions throughout bed, bubbles, and splash zone has been tackled by the V-statistic analysis, which has proven that the location of micro-explosions is just at the bed surface when T = 650 °C and moves deeper and deeper into the bed when its temperature increased to about 800 °C. The values found for the largest Lyapunov exponent in the time series demonstrate that the investigated system is not only dynamic but also chaotic in its nature

    A simple stochastic model for the evolution of protein lengths

    Full text link
    We analyse a simple discrete-time stochastic process for the theoretical modeling of the evolution of protein lengths. At every step of the process a new protein is produced as a modification of one of the proteins already existing and its length is assumed to be random variable which depends only on the length of the originating protein. Thus a Random Recursive Trees (RRT) is produced over the natural integers. If (quasi) scale invariance is assumed, the length distribution in a single history tends to a lognormal form with a specific signature of the deviations from exact gaussianity. Comparison with the very large SIMAP protein database shows good agreement.Comment: 12 pages, 4 figure

    Unquenched Numerical Stochastic Perturbation Theory

    Get PDF
    The inclusion of fermionic loops contribution in Numerical Stochastic Perturbation Theory (NSPT) has a nice feature: it does not cost so much (provided only that an FFT can be implemented in a fairly efficient way). Focusing on Lattice SU(3), we report on the performance of the current implementation of the algorithm and the status of first computations undertaken.Comment: 3 pages, 3 figures, Lattice2002(algor

    High-loop perturbative renormalization constants for Lattice QCD (I): finite constants for Wilson quark currents

    Get PDF
    We present a high order perturbative computation of the renormalization constants Z_V, Z_A and of the ratio Z_P/Z_S for Wilson fermions. The computational setup is the one provided by the RI'-MOM scheme. Three- and four-loop expansions are made possible by Numerical Stochastic Perturbation Theory. Results are given for various numbers of flavours and/or (within a finite accuracy) for generic n_f up to three loops. For the case n_f=2 we also present four-loop results. Finite size effects are well under control and the continuum limit is taken by means of hypercubic symmetric Taylor expansions. The main indetermination comes from truncation errors, which should be assessed in connection with convergence properties of the series. The latter is best discussed in the framework of Boosted Perturbation Theory, whose impact we try to assess carefully. Final results and their uncertainties show that high-loop perturbative computations of Lattice QCD RC's are feasible and should not be viewed as a second choice. As a by-product, we discuss the perturbative expansion for the critical mass, also for which results are for generic n_f up to three loops, while a four-loop result is obtained for n_f=2

    Two and three loops computations of renormalization constants for lattice QCD

    Full text link
    Renormalization constants can be computed by means of Numerical Stochastic Perturbation Theory to two/three loops in lattice perturbation theory, both in the quenched approximation and in the full (unquenched) theory. As a case of study we report on the computation of renormalization constants of the propagator for Wilson fermions. We present our unquenched (N_f=2) computations and compare the results with non perturbative determinations.Comment: Lattice2004(improv), 3 pages, 4 figure

    Non-destructive characterisation of a Villanovan sword using time-of-flight neutron diffraction

    Get PDF
    In the present work we report an example application of time-of-flight neutron diffraction for the non-destructive characterisation of ancient bronzes. A Villanovan sword tightly joined to its scabbard by corrosion has been investigated. Data on alloy composition of the different parts and information about the manufacturing techniques have been successfully achieved. The present study is part of an extensive non-destructive investigation program concerning bronze productions of Central Italy during the Iron Age

    PUK10 ECONOMIC IMPACT OF A LOW-PROTEIN DIET AIMING TO DELAY THE HAEMODIALYSIS TREATMENT IN PATIENTS WITH CHRONIC-RENAL-FAILURE

    Get PDF
    • …
    corecore