28 research outputs found

    Small sets of complementary observables

    Full text link
    Two observables are called complementary if preparing a physical object in an eigenstate of one of them yields a completely random result in a measurement of the other. We investigate small sets of complementary observables that cannot be extended by yet another complementary observable. We construct explicit examples of the unextendible sets up to dimension 1616 and conjecture certain small sets to be unextendible in higher dimensions. Our constructions provide three complementary measurements, only one observable away from the ultimate minimum of two observables in the set. Almost all of our examples in finite dimension allow to discriminate pure states from some mixed states, and shed light on the complex topology of the Bloch space of higher-dimensional quantum systems

    Quantum nature of Gaussian discord : experimental evidence and role of system-environment correlations

    Get PDF
    L.M. acknowledges Project No. P205/12/0694 of Czech Science Foundation (GACR). N.K. is grateful for the support provided by the A. von Humboldt Foundation. N.Q. and N.K. acknowledge the support from the Scottish Universities Physics Alliance (SUPA) and the Engineering and Physical Sciences Research Council (EPSRC). The project was supported within the framework of the BMBF grant “QuORep” and in the framework of the International Max Planck Partnership (IMPP) with Scottish Universities.We provide experimental evidence of quantum features in bipartite states classified as entirely classical according to a conventional criterion based on the Glauber P function but possessing nonzero Gaussian quantum discord. Their quantum nature is experimentally revealed by acting locally on one part of the discordant state. We experimentally verify and investigate the effect of discord increase under the action of local loss and link it to the entanglement with the environment. Adding an environmental system purifying the state, we unveil the flow of quantum correlations within a global pure system using the Koashi-Winter inequality. For a discordant state generated by splitting a state in which the initial squeezing is destroyed by random displacements, we demonstrate the recovery of entanglement highlighting the role of system-environment correlations.Publisher PDFPeer reviewe

    Improving teleportation of continuous variables by local operations

    Full text link
    We study a continuous-variable (CV) teleportation protocol based on a shared entangled state produced by the quantum-nondemolition (QND) interaction of two vacuum states. The scheme utilizes the QND interaction or an unbalanced beam splitter in the Bell measurement. It is shown that in the non-unity gain regime the signal transfer coefficient can be enhanced while the conditional variance product remains preserved by applying appropriate local squeezing operation on sender's part of the shared entangled state. In the unity gain regime it is demonstrated that the fidelity of teleportation can be increased with the help of the local squeezing operations on parts of the shared entangled state that convert effectively our scheme to the standard CV teleportation scheme. Further, it is proved analytically that such a choice of the local symplectic operations minimizes the noise by which the mean number of photons in the input state is increased during the teleportation. Finally, our analysis reveals that the local symplectic operation on sender's side can be integrated into the Bell measurement if the interaction constant of the interaction in the Bell measurement can be adjusted properly.Comment: 10 pages, 1 figure, discussion of the non-unity gain teleportation is adde

    Information-Disturbance Tradeoff in Quantum State Discrimination

    Get PDF
    When discriminating between two pure quantum states, there exists a quantitative tradeoff between the information retrieved by the measurement and the disturbance caused on the unknown state. We derive the optimal tradeoff and provide the corresponding quantum measurement. Such an optimal measurement smoothly interpolates between the two limiting cases of maximal information extraction and no measurement at all.Comment: 5 pages, 2 (low-quality) figures. Eq. (20) corrected. Final published versio

    Nonunity gain minimal-disturbance measurement

    Get PDF
    We propose and experimentally demonstrate an optimal non-unity gain Gaussian scheme for partial measurement of an unknown coherent state that causes minimal disturbance of the state. The information gain and the state disturbance are quantified by the noise added to the measurement outcomes and to the output state, respectively. We derive the optimal trade-off relation between the two noises and we show that the trade-off is saturated by non-unity gain teleportation. Optimal partial measurement is demonstrated experimentally using a linear optics scheme with feed-forward.Comment: 12 page

    Nonlocality of Two-Mode Squeezing with Internal Noise

    Full text link
    We examine the quantum states produced through parametric amplification with internal quantum noise. The internal diffusion arises by coupling both modes of light to a reservoir for the duration of the interaction time. The Wigner function for the diffused two-mode squeezed state is calculated. The nonlocality, separability, and purity of these quantum states of light are discussed. In addition, we conclude by studying the nonlocality of two other continuous variable states: the Werner state and the phase-diffused state for two light modes.Comment: 7 pages, 5 figures, submitted to PR

    Measurement-induced disturbances and nonclassical correlations of Gaussian states

    Full text link
    We study quantum correlations beyond entanglement in two-mode Gaussian states of continuous variable systems, by means of the measurement-induced disturbance (MID) and its ameliorated version (AMID). In analogy with the recent studies of the Gaussian quantum discord, we define a Gaussian AMID by constraining the optimization to all bi-local Gaussian positive operator valued measurements. We solve the optimization explicitly for relevant families of states, including squeezed thermal states. Remarkably, we find that there is a finite subset of two-mode Gaussian states, comprising pure states, where non-Gaussian measurements such as photon counting are globally optimal for the AMID and realize a strictly smaller state disturbance compared to the best Gaussian measurements. However, for the majority of two--mode Gaussian states the unoptimized MID provides a loose overestimation of the actual content of quantum correlations, as evidenced by its comparison with Gaussian discord. This feature displays strong similarity with the case of two qubits. Upper and lower bounds for the Gaussian AMID at fixed Gaussian discord are identified. We further present a comparison between Gaussian AMID and Gaussian entanglement of formation, and classify families of two-mode states in terms of their Gaussian AMID, Gaussian discord, and Gaussian entanglement of formation. Our findings provide a further confirmation of the genuinely quantum nature of general Gaussian states, yet they reveal that non-Gaussian measurements can play a crucial role for the optimized extraction and potential exploitation of classical and nonclassical correlations in Gaussian states.Comment: 16 pages, 5 figures; new results added; to appear in Phys. Rev.

    Quantum Zeno effect in a probed downconversion process

    Full text link
    The distorsion of a spontaneous downconvertion process caused by an auxiliary mode coupled to the idler wave is analyzed. In general, a strong coupling with the auxiliary mode tends to hinder the downconversion in the nonlinear medium. On the other hand, provided that the evolution is disturbed by the presence of a phase mismatch, the coupling may increase the speed of downconversion. These effects are interpreted as being manifestations of quantum Zeno or anti-Zeno effects, respectively, and they are understood by using the dressed modes picture of the device. The possibility of using the coupling as a nontrivial phase--matching technique is pointed out.Comment: 11 pages, 4 figure

    Continuous-variable Werner state: separability, nonlocality, squeezing and teleportation

    Get PDF
    We investigate the separability, nonlocality and squeezing of continuous-variable analogue of the Werner state: a mixture of pure two-mode squeezed vacuum state with local thermal radiations. Utilizing this Werner state, coherent-state teleportation in Braunstein-Kimble setup is discussed.Comment: 7 pages, 4 figure
    corecore