89 research outputs found

    Implementation of a New DTSTEP Algorithm for use in RELAP5-3D and PVMEXEC Completion Report

    Get PDF
    The PVM Coupling methodology for decomposing a complex model into domains onto which individual programs may be applied has proven effective for solving many multi-physics problems. There have been, from the outset, some detailed and/or long-running models that cause the process to fail. This project addressed the PVM coupling issues surrounding the DTSTEP subroutines on RELAP5-3D and PVMEXEC. Some 25 errors are listed in Tables 1 and 18 and in Section 11. These arise from deficiencies in the floating point calculation and testing of time steps, cumulative time, and time targets. The algorithmic replacement of floating point control of these items with integer based timestepping was developed and implemented. The result of the first phase, undertaken by the INL was that all but three of these issues were resolved. Moreover, two conceptual errors in DTSTEP that were not PVM coupling related were discovered and solved. The final, and most difficult three PVM Bettis User Problems, were solved during the Bettis phase of development and debugging. In 8 months since the conclusion of the project, no further DTSTEP related PVM Coupling errors have been reported

    Uncertainty Analysis for RELAP5-3D

    Get PDF
    In its current state, RELAP5-3D is a 'best-estimate' code; it is one of our most reliable programs for modeling what occurs within reactor systems in transients from given initial conditions. This code, however, remains an estimator. A statistical analysis has been performed that begins to lay the foundation for a full uncertainty analysis. By varying the inputs over assumed probability density functions, the output parameters were shown to vary. Using such statistical tools as means, variances, and tolerance intervals, a picture of how uncertain the results are based on the uncertainty of the inputs has been obtained

    Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy

    Get PDF
    Epileptic seizures represent altered neuronal network dynamics, but the temporal evolution and cellular substrates of the neuronal activity patterns associated with spontaneous seizures are not fully understood. We used simultaneous recordings from multiple neurons in the hippocampus and neocortex of rats with chronic temporal lobe epilepsy to demonstrate that subsets of cells discharge in a highly stereotypical sequential pattern during ictal events, and that these stereotypical patterns were reproducible across consecutive seizures. In contrast to the canonical view that principal cell discharges dominate ictal events, the ictal sequences were predominantly composed of fast-spiking, putative inhibitory neurons, which displayed unusually strong coupling to local field potential even before seizures. The temporal evolution of activity was characterized by unique dynamics where the most correlated neuronal pairs before seizure onset displayed the largest increases in correlation strength during the seizures. These results demonstrate the selective involvement of fast spiking interneurons in structured temporal sequences during spontaneous ictal events in hippocampal and neocortical circuits in experimental models of chronic temporal lobe epilepsy

    Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat

    Get PDF
    Sherpa Romeo green journal; open accessA central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal andmedial-lateral regions,which includesazonepreviously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied signiïŹcantly along the medial-lateral, but not the rostral-caudal axis. SpeciïŹcally, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more signiïŹcantlaterally.Finally,basedonconnectiondensity,theconnectivitybetweenparietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.Ye

    Effects of Cannabinoids on Caffeine Contractures in Slow and Fast Skeletal Muscle Fibers of the Frog

    Get PDF
    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 ΌM) caused a decrease in tension. These doses reduced maximum tension to 67.43 ± 8.07% (P = 0.02, n = 5) and 79.4 ± 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 ± 7.17% and 75.10 ± 3.60% (P = 0.002, n = 5), respectively. Using the CB1 cannabinoid receptor agonist ACPA (1 ΌM) reduced the maximum tension of caffeine contractures by 68.70 ± 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 ± 6.89% (P = 0.02, n = 5) compared to controls. When the CB1 receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 ΌM) also decreased tension; the maximum tension was reduced by 56.48 ± 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 ± 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB1 receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism
    • 

    corecore