
This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-07-12089
PREPRINT

Streamlining of the
RELAP5-3D Code

NURETH-12

George L. Mesina
Joshua M. Hykes
Donna Post Guillen

November 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71324784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12) Log Number: 165
Sheraton Station Square, Pittsburgh, Pennsylvania, U.S.A. September 30-October 4, 2007.

(1/16)

STREAMLINING OF THE RELAP5-3D CODE

George L. Mesina1, Joshua M. Hykes2 and Donna Post Guillen1

1Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415
P.O. Box 1625, Idaho Falls, ID 83415

George.Mesina@inl.gov; Donna.Guillen@inl.gov

2Department of Nuclear Engineering
Pennsylvania State University

0355 Atherton Hall, University Park, PA 16802
Jmh539@psu.edu

ABSTRACT

Many successful and long-lived computer programs undergo physical modeling improvements
and optimizations over a period of years. These have often been incorporated into the programs
without regard for readability or runtime and have created maintenance and development
difficulties. Thus, modifying a program to incorporate new models, upgrade numerics, optimize
to new hardware, and adapt to new platforms becomes more difficult as the code grows larger
and more complex. Conversely, the probability of introducing errors is significantly reduced
when the code is subsequently streamlined with a focus on maintainability and readability. For a
code such as RELAP5-3D, with numerous past, present. and planned future developments, it is
valuable to modify the code infrastructure so that the modifications are incorporated in a
consistent and reliable manner. For these reasons, the process of streamlining RELAP5-3D by a
combination of restructuring and rewriting the code has been undertaken. Results of this work
are reported here.

KEYWORDS
RELAP5, restructure, thermal hydraulics

1. INTRODUCTION

Legacy codes are applications which have been developed over the course of many years, even
several decades. Examples of such codes in the nuclear industry include RELAP5-3D [1],
TRACE [2], CATHARE [3], RETRAN-03 [4], COBRA-IV [5], CONTAIN [6], MELCOR [7],
and MCNP [8] to name but a few. It is common for these applications to have had multiple
programmers who have both modified parts of the program and added coding to incorporate new
features. This results in disparate coding structures and styles throughout the program that
complicates maintenance and development tasks. Factors that contribute to this are:

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(2/16)

Modification of existing features to extend their range of application.

Improvements to code numerics for greater accuracy and robustness.

Development of new features with fundamentally different database structures.

Importation and incorporation of library subprograms and/or full programs.

Use of conditional code to protect/incorporate features for specific purposes (e.g.,
different platforms, different customer groups, and proprietary code purposes).

Adaptations of the code to various operating systems and compilers.

Optimizations to take advantage of computer architectures (such as RISC, vector,
parallel, and message passing).

A mixture of the different programming styles from developers of all these factors
resulting in the lack of a consistent or cohesive style.

Often, coding introduced to implement one or more these factors complicates the subprogram
unit into which it is placed. It can disrupt the flow of the original algorithm with jumps, such as
GOTO statements and returns, or with conditional sections of code. Depending upon the skill of
the programmers and constraints such as time and funding, this has also resulted in redundant
coding (sections of repeated code that could have been a subprogram) and even unused sections
of code. In addition, the development of many legacy codes started before modern standards of
software engineering were established; consequently, the codes often contain coding styles
inconsistent with today's programming paradigms.

The cumulative effect of years of changes to a legacy code is that the code may lack the structure
of newer codes. This has led to a need for streamlining of some legacy codes. Streamlining of a
procedural program includes:

Reorganization of the code into the structured programming paradigm.

Removal of unused and obsolete sections of code.

Simplification of complex subprograms.

Establishment and application of consistent programming style rules.

Removal of programming workarounds (“tricks”) imposed by language limitations

A good example of this is the RELAP5 code, a state-of-the-art nuclear power plant safety
analysis program developed by the Idaho National Laboratory (INL). Designed to analyze
operational transients and a variety of accident scenarios for pressurized light water reactors,
RELAP5 has been extended in many ways over the years to increase its capabilities, as well as
provide updates, corrections, and enhancements. These extensions include modeling of boiling
water, molten salt, liquid-metal, and gas-cooled fission reactors as well as fusion reactors. The
code was also extended to drive nuclear plant operator training simulators. Some changes that

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(3/16)

brought about these extensions include the addition of 26 fluids, multi-dimensional thermal-
hydraulics and multi-dimensional neutron kinetics, improved numerics, and code optimizations
for speed, platforms, and programming paradigms (such as shared memory multi-processing).

As listed above, the development effort has involved a variety of programming short-cuts and
tricks, code imports, and the use of numerous code developers of varying ability and styles. The
resulting code is difficult to work with because of readability and understandability issues.

In general, the process of software quality assurance verifies and validates a program version.
This guarantees that the code works correctly by solving the equations right (verification) and
solving the right equations (validation) [9]. However, this process does nothing to improve
readability and understandability of the database and code. To improve the coding, the computer
industry has developed a number of code analyzers and processors. These include complexity
analyzers, coverage analyzers, optimization analyzers (parallel region analysis, for example), and
reformatting and restructuring software. Applying these tools can lead a programmer to a variety
of ideas/suggestions to improve a computer program.

Complexity analysis of RELAP5-3D revealed that part of the readability issue was too many
logic flow paths within its larger subroutines. Additionally, coding was written for different
compilers and by different authors in different styles. The largest difficulty with understanding
the coding, apart from these readability issues, is the complex database or container array.

To address these issues and make the code easier to maintain and develop, streamlining of
RELAP5-3D has been undertaken. The database has been completely reconstructed and rewritten
as Fortran 90 modules. The coding has been reorganized into the structured programming
paradigm. Streamlining the source code has many aspects and is the subject of this paper; the
reconstruction of the database will be the subject of another paper. The result of streamlining,
both source code and database, is a code that is easier to read, understand, develop, and maintain.

2. CODE DEVELOPMENT AND EFFECTS

Partial History of RELAP5 Code Developments

The RELAP5 code was originally designed to analyze large break Loss of Coolant Accidents
(LOCA) in a Pressurized Water Reactor (PWR). Therefore, great effort was given to the time
scales and pressures consistent with these operating and accident conditions. Therefore, a semi-
implicit time-stepping scheme subject to the material Courant limit and steam tables operating in
the range of atmospheric pressure to 22 MPa for light water were developed.

Almost from the beginning, the development team decided to expand the original design to
analyze small break LOCAs as well. They also included the capability to analyze the Boiling
Water Reactor (BWR) as it operates in the same time scale and pressure ranges. Later, it was
straightforward to add heavy water as another coolant because processes to develop the tables for
heavy and light water fluid properties were similar.

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(4/16)

Originally, RELAP5 solved a set of five governing partial differential equations: two phasic
continuity equations, two phasic momentum equations, and one energy equation, and achieved
closure of the system of equations by assuming the minor phase was saturated. There was a
major change to six governing equations in RELAP5/MOD2, wherein the algebraic energy
equation was replaced by a second phasic energy conservation equation. This immensely
complicated several subroutines, especially the equation of state calculations which now had to
account for metastable states in both phases.

It was later deemed valuable to take larger time steps both for slowly changing operational
transients and for steady-state calculations. A new numerical time-stepping algorithm was
developed, the so-called nearly-implicit method. This method added a number of new
subroutines, added complexity to many existing subroutines and to the overall solution algorithm
in general.

Rigorous assessment of many mostly empirical hydrodynamic and heat transfer correlations and
their replacement with conventional “text book” correlations led to a great deal of development
in the form of new subroutines and modification of existing ones. So extensive were the changes,
the new code version was named RELAP5/MOD3. At the same time, a much improved off-take
model and a Counter-Current Flow Limiting (CCFL) model were added.

A very large change was the development of multidimensional physics for use in modeling
asymmetric accident scenarios (such as a cold-leg break in a multi-loop plant) more accurately
for the heavy water cooled tritium production reactors at Savannah River. This affected the
database, which previously held primarily linear arrays. The multidimensional hydrodynamics
introduced new kinds of data, new input and output, over half a dozen new large subroutines, and
extensive modifications to several others. The NESTLE [10] multidimensional nodal kinetics
program was imported by creating a large interface array to contain its data, means to access the
data and coding, and new input. The BPLU [11] linear equation solver was introduced to reduce
the run time for large multidimensional models, particularly on vector and parallel platforms. All
these went into RELAP5/MOD 3.2 as conditional coding in the early 1990s.

A Department of Energy (DOE) Cooperative Research and Development Agreement (CRADA)
was undertaken with Scientific Applications International Corporation (SAIC) in 1994 to
develop a real-time version of RELAP5 for use in operator training simulators. The work was
completed in 1996 and real-time RELAP5 has been placed on numerous training simulators
throughout the world.

The most extensive change of the CRADA project was the parallelization of the RELAP5 code.
The target platform was a 233 MHz, 2-CPU, shared memory platform on which a sufficiently
detailed model of a reactor was required to run at simulator speed, namely completion of one
time step every 0.1 seconds of wall-clock time. The parallel coding changes were introduced via
calls to the Kuck and Associates Incorporated (KAI) parallel library procedures. The processing
was divided among four threads, one of which was the master and the others its slaves. The
implementation not only changed the fundamental way the processing took place, but was
implemented as CRADA-protected conditional code; therefore, the normal single-processor
serial processing method had to continue to work.

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(5/16)

The CRADA produced RELAP5-RT, the real-time version of RELAP5; it could be configured
from RELAP5/MOD3.2 by choosing the correct set of conditional coding. The CRADA also
directly led to RELAP5-3D which is configured by selecting the multidimensional
hydrodynamics and neutron kinetics.

Graphical User Interfaces (GUI) have been added to RELAP5 to display calculated data. The
Nuclear Plant Analyzer (NPA) [12] and SIMPORT [13] visualize data on a 2D schematic of the
plant with displays resembling actual nuclear plant controls. The RELAP5-3D Graphical User
Interfaces (RGUI) [14] displays plant conditions on a 3D representation of the plant. All three
require interface coding, both SIMPORT, now renamed 3KeyMaster by Western Services Corp.,
and RGUI are interactive, and RGUI adds another set of data to RELAP5-3D.

To model severe code damage, the Severe Code Damage Analysis Program (SCDAP) [15] was
incorporated into RELAP5/MOD2 for analyzing severe accidents, such as Three Mile Island. It
has its own database that is completely different from that of RELAP5-3D as conditional code.
Both NESTLE and BPLU had been standalone programs comprised of suites of subroutines that
each had totally different databases than RELAP5 and were imported directly into the code with
little change beyond imposition of certain style conventions.

Rather than continuing to subsume entire programs into RELAP5-3D, a method to couple
RELAP5-3D to programs with features useful to analyzing specific plants was developed. The
PVMEXEC [16] program is a master program that uses the Parallel Virtual Machine (PVM)
message passing methodology to communicate between RELAP5-3D and other programs, such
as FLUENT, to model large single-phase regions, or to CONTAIN to model the containment in a
nuclear power plant. The conditional coding within RELAP5-3D that communicates with the
PVMEXEC program makes use of the RELAP5-3D database but extends it in ways different
from all previous database extensions.

2.2 Recent and ongoing developments

Part of code maintenance is adapting to new hardware, operating systems, and operating system
software, such as compilers. From its inception, RELAP5-3D has been adapted to various
computing platforms ranging from vector-parallel to RISC workstations to PCs and from the
Cray OS to various vendor versions of Unix and Linux to MS Windows. It was written in Fortran
66, converted to Fortran 77, and is undergoing transformation to Fortran 90. This latter
development reduces machine dependency by replacing platform specific coding with Fortran 90
intrinsics, thus eliminating some conditional coding.

Current and future planned developments include continual physics improvements for the Next
Generation Nuclear Plant (NGNP) and for the Global Nuclear Energy Program (GNEP). The
former will be a gas cooled reactor [17], while the latter will be sodium cooled. Also, there is a
continuing need to develop the code for existing plants, as well as in the design and analysis of
Generation 3+ plants, such as AP1000, ABWR, ESBWR, USEPR, and USAPWR.

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(6/16)

Fluids data continue to be added to enable the modeling of different reactor designs. Fluids have
been added and/or enhanced recently for the analysis of space reactors and Generation 4
conceptual designs. For example, helium, xenon, and helium-xenon data were added for space
reactors, carbon dioxide for supercritical CO2 conceptual design, lead-bismuth for a fast liquid-
metal generation four design, and four fluorine-based molten salts were added for a variant of the
NGNP [18]. Such additions are incorporated into RELAP5-3D merely by adding a fluid property
table generator and small coding changes to allow the user to select them via input.

Some specific recent developments for Generation 3 and 4 plants include the Henry-Fauske
critical flow model, and heat transfer correlations such as Gneilinksi for gas-cooled reactor
applications and Bishop and Oka-Koshizuka for supercritical water applications [1]. These
changes have relatively minor effect on the database and the coding effects are confined to either
a new subroutine or subroutine section. Another current and proprietary development is the
addition of conditional coding for carrying out Appendix K calculations. This also has a
relatively minor impact on the database, but requires introduction of conditional code to a large
number of subroutines.

The result of all this code development has been a code that works correctly but has become
unwieldy to develop. RELAP5-3D matches separate effects and plant performance data and,
when configured as RELAP5-RT, provides excellent performance on nuclear plant operator
training simulators in terms of speed and actual plant reaction to operator actions. However, the
coding is difficult to read, understand and maintain. The partial development history of
RELAP5-3D recounted in Section 2 demonstrates that every code complication factor listed in
Section 1 is in effect. Steps are being taken to overcome maintenance and development issues
introduced by these factors. The process is program streamlining.

3. STREAMLINING

Program streamlining addresses two separate areas, namely the database and the coding. This
paper addresses only the coding area. For a procedural code, such as RELAP5-3D, the greatest
portion of program streamlining is to reorganize the code into the structured programming
paradigm as described in Section 3.1. A software tool can be employed to restructure code;
however, the tools have limitations as discussed in Section 3.2. These limitations can be
overcome through pre- and post-processing development for the subroutines being restructured,
which is explained in further detail in Section 3.3. Automatic tools are not always the best
solution; some subprograms are so complex that manual reworking is the best approach, as
outlined in Section 3.4. Finally, measurements of code readability and understandability
improvement are presented in Section 3.5.

3.1 Structured Programming

Many attempts have been made, throughout the history of computing, to produce code that is
easy to read and understand because, in general, such programming is more reliable and the
processes of maintenance, debugging, and development are simpler and less costly. In the 1960’s
and 1970’s, the concept of structured programming for procedural, as opposed to object-oriented,
programs was developed. It arose from the structured programming theorem. It states that three

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(7/16)

ways of combining programs—sequencing, selection, and iteration—are sufficient to express any
computable function [19]. From this Dijkstra published his famous article, “GOTO Statement
Considered Harmful” [20] wherein he laid the foundation for structured programming.

Dijkstra’s structured programming paradigm can be summarized as follows [21]. Structured
programming is a technique for organizing and coding computer programs in which a hierarchy
of “modules” is used, each having a single entry and a single exit point, and in which control is
passed downward through the structure with no unconditional branches to higher levels of the
structure. There are three types of flow control: sequential; test (if and case); and iteration (loop).
The term “block of code” or simply block is used in place of “module” to avoid confusion for
languages with “module” constructs, such as Fortran 90.

Not every computer scientist agreed that each block must have exactly one exit point and some
argued that GOTO can be useful in some situations [22], [23]. Along with structured
programming came a number of related principles, such as top-down design, stepwise
refinement, modularity, and data encapsulation. All of these ideas have proven their worth and
remain a part of software practice today [24].

Accordingly, the principles of structured programming were applied to the restructuring of
RELAP5-3D as follows: Structured programs can be broken into sub-sections or blocks, each
with one point of entry and at least one point of exit, such that control passes downward from
one block to the next with no unconditional branches to higher levels of the structure.

A very important feature of restructuring is that it can be undertaken subprogram by subprogram,
as each is independent of every other one. Thus, properly planned, restructuring can be carried
out in a manner that does not interfere with other maintenance and development work.

3.2 Software Tool and Limitations

After a study was made of various restructuring tools available, FOR_STRUCT [25] was
selected based on performance on some very complex RELAP5-3D subroutines. This product
can reorganize FORTRAN 77 programming into code that satisfies the working definition of
structured coding. It can also apply some simple formatting rules as it rewrites the code. In the
process of restructuring, FOR_STRUCT will make specific improvements such as:

Restructure loops with backwards GOTOs into do loops.

Replace GOTOs with equivalent structured constructs where it makes sense to do so (i.e.,
not indiscriminately).

Remove/renumber statement labels consistently.

Convert do/continue constructs to the more modern do/endo form.

Identify unused blocks of code and unused variables.

Consistently apply user-supplied programming style rules.

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(8/16)

However, the restructuring of RELAP5-3D subroutines is made complex by several issues. A
prime rule for restructuring is that its input (a program unit) must compile with no errors.
Therefore, pre-compiler directives cannot be present nor can any coding outside the ANSI
FORTRAN standard. Another important issue is sheer size of the input. Really large, complex
subprograms are not fully restructured by FOR_STRUCT. A seemingly lesser limitation is that
not all comments move correctly with the block of coding to which they belong. This affects the
strategies available in overcoming the first three limitations. Finally, not all restructured coding
is more readable than the original. In these cases, manual work is needed to improve readability.
Because the restructuring tools have limitations, they cannot be applied directly. Strategies for
overcoming these limitations are discussed in Section 3.3.

3.3 Restructuring Algorithm

The limitations of the restructuring tools require some sort of preprocessing to prepare a
subprogram as proper input to the restructuring program. After restructuring, the modifications
must be undone to ensure all features, such as pre-compiler directives, are intact. Preprocessing
and post-processing can be largely automated. However for several reasons, manual processing
for long or complex subprograms is sometimes necessary prior to automated preprocessing and
is often necessary after automated post-processing. This is summarized in Figure 1.

 Figure 1 High Level Restructuring Algorithm.

Each limitation is examined in turn and methods implemented to overcome it are explained.

3.3.1 Non-standard executable code

The existence of non-standard executable code prevents restructuring using FOR_STRUCT.
Most FORTRAN restructuring tools, including FOR_STRUCT, accept only ANSI-standard
FORTRAN 77. Non-standard code falls into two categories, machine-specific coding and coding
from Fortran 90 or a higher ANSI standard. An example of the former is the Cray-specific buffer
statement.

In most cases, where the non-standard coding is not within a decision statement, the entire
statement can be commented out and restructuring works correctly. For a decision a legitimate
Fortran 77 item replaces the non-standard item, such as a Fortran 90 derived type reference. The
replacements are recorded for reverse substitution after restructuring.

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(9/16)

3.3.2 Conditional Code

The existence of conditional code prevents restructuring using FOR_STRUCT. Conditional code
in RELAP5-3D is marked by pre-processor directives #ifdef, #ifndef, #else, and #endif, where
#ifdef and #ifndef are each followed by a single argument, the pre-processor flag. Coding
between a #ifdef and its paired #endif is included in the pre-processor output if the flag is
activated by its inclusion in a define file. Otherwise the coding in the #ifndef or #else section, if
it exists, is output by the pre-processor.

Pre-compiler directives are not part of the standard. The program unit will conform to the
standard if the directives are somehow removed. Either converting them to comments or
applying the pre-processor will remove them, but neither of these is sufficient.

Simply commenting out directives can lead to compiler errors. Some examples are: multiple
occurrences of a statement number from different conditional blocks of code; successive do-
loops statements (before any end do) with the same do-index; improper nesting; and multiple
declaration of the same variable.

Alternatively, applying the pre-compiler eliminates the directives. It also removes some
conditional coding. The missing coding must be restored to the restructured subprogram. One
difficulty with this is finding the precise location to place correctly the missing coding when the
rest of the code may be completely rearranged. Another difficulty is that the missing code is not
restructured. Finally, the missing code may contain jumps (GOTO statements, read and open
condition branch labels) to statement labels that have been eliminated or renumbered.

The solution is to combine the two approaches. First, create a comment that records where each
directive is, but place it on the outside of the conditional block of coding. The comment serves as
a marker of where the removed coding must be returned. Second, create one define file for each
possible combination of pre-compiler flags, and then apply the pre-compiler to each. With N
different flags there are 2N combinations, resulting in 2N pre-compiled files. Third, restructure
each pre-compiled subprogram producing 2N output files. Finally, starting with the first file,
replace markers with restructured blocks from another output file until all markers are gone and
restore the directives from the markers. This is summarized in Figure 2.

In fact, 2N define files are not needed because many combinations would produce exactly the
same pre-compiled file. In practice, only the minimal number of combinations is employed.

Figure 2 Flowchart for handling conditional code

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(10/16)

Everything discussed thus far has been fully automated, except restoration of directives. The tool
associates comments with block of code immediately below them. Thus, #endif comment
markers can be misplaced. Misplaced #endif directives must be properly relocated manually.

3.3.3 Long program units

Experience shows that FOR_STRUCT does not fully restructure program units with more than
about 500 lines of code. Such subroutines are improved in measurable ways by the restructuring
program, for example, there are fewer GO TO statements, but more restructuring is possible.

The algorithm for the automated work is summarized in Figure 3.

Figure 3 Restructuring Algorithm – automated portion.

The solution is to apply restructuring iteratively by applying the restructuring tool to its own
output file. With each successive iteration, incremental improvement is made. Experience

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(11/16)

showed that there was usually little or no gain after three iterations and this was the upper limit
applied to RELAP5-3D subroutines. In cases where three iterations left a significant measure of
structuring undone, manual creation of contained subroutines was applied, Section 3.4.1. Note
that iteration is performed before post-processing.

3.4 Restructuring via rewriting

It must be noted that not all code is more legible or completely restructured after application of
Algorithm 3.3.3. The true goal of streamlining is code that runs correctly and is easier to read
and maintain. In some cases, the modified code satisfies the structured program definition, but it
is actually harder to read. The modified code may have extremely deep indentation that causes
too many continuation lines. Hard-to-comprehend “do while” constructs may have replaced
backward GOTO statements. Numerous GO TO statements may remain and new ones may have
been introduced. In these cases, some manual rewriting is necessary to increase readability.

For subroutines with a significant number of misplaced #endif directives (Section 3.3.2) and for
very large and complex subroutines, manual restructuring can be applied before using the
restructuring tool. At its highest level, this is done by creating contained subroutines. For
subroutines that the tool cannot improve or that have grown difficult to develop and maintain
because of a combination of the factors listed in Section 1, a complete rewrite is in order.

3.4.1 Internal subroutines

Blocks of code that perform a specific function in the high-level algorithm of the subroutine are
identified. The original subroutine is modified so that this block of code has only one entrance
and one exit. This can be a difficult process for a block with many jump exits and many
statement labels that serve as entry points. The block of code is then moved to the contain section
of the original subroutine and a call statement is left in its place.

A block of code marked by a directive pair (#ifdef or #ifndef and #endif) is easy to identify. If it
is one where the #endif becomes misplaced, placing the directives inside the contained
subroutine prevents misplacing the #endif. Also, if a particular sequence of coding is repeated
many times with different variables, turning that into a contained subroutine both shortens and
simplifies the code.

Manually moving blocks of coding to contained subroutines both restructures and enhances
readability. Creating internal subroutines can be done before or after automated restructuring.

3.4.2 Complete rewriting

An example of a RELAP5-3D subroutine that required rewriting is SCNREQ. Three tools were
applied to restructure it. They not only failed to improve the code, but actually added GO TO
statements and increased its length. Moreover, the “restructured” code was less legible.

Rewriting requires less time than was devoted to developing the original subroutine.
Development time includes the time for creating the original program unit and the time for

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(12/16)

incorporating new features and debugging and maintaining it. The complete set of functions that
an existing subroutine performs is known at rewrite time.

Rewriting a subprogram begins with recording all its functions and analyzing its underlying
algorithm. An efficient means of implementing all the functions is identified and written as a
new algorithm. This algorithm is converted to source code according to the established style
guidelines for the program. It is then debugged and fully tested.

This procedure was applied to subroutine SCNREQ, whose original purpose was to provide the
index in the container array of a specific datum from among specific data types requested by the
user via input. This had been expanded to optionally provide conversion factors, physical units,
and to include many more data types of differing structures. GO TO, computed GO TO, and
arithmetic if statements provided all transfers. Manual rewriting produced a subroutine,
IREQUEST, with the same functionality in only 1600 lines, not 2900, and has no GO TO
statements or statement labels except for formats. It is very easy to read and modify due to its use
of contained subroutines, adherence to the program guidelines, and single programming style.

3.5 Metrics

For streamlining to be successful, the code must become more legible in measurable ways. Some
of measurable items that make a code difficult to read and understand are:

Large number of GO TO statements
Backward GO TO statements
Many statement labels
Repeated, redundant and dead code

These items were addressed by the restructuring tool and by manual streamlining in Section 3.4.
Of these, only two sections of dead code were identified and removed. Measures of the other
three items are given in Tables I and II. Both compare RELAP5-3D version 2.4.1, denoted as
“Before,” and 2.5.5 with SCNREQ replaced by IREQUEST, denoted “After”.

 Table I. Effect of streamlining on GO TO statements

Go to statements Before After Ratio
Total files 554 610
Total subprograms 588 714
0 GO TOs 255 386 0.66
10 or more GO TOs 138 93 1.48
25 or more GO TOs 66 45 1.47
100 or more GO TOs 9 1 9.0
Total GO TOs 6707 3977 1.69
Computed GO TOs 100 7 14.29
Backward GO TOs 822 125 6.32
Avg./file 12.1 6.7 1.81
Avg./subpgm. 12.0 6.1 1.97
Maximum 778 157 4.96

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(13/16)

As can be seen, in Table I, the number of GO TO statements was reduced significantly. The
number of files with no GO TO statements increased by 130 files (over 50%), the maximum
number of GO TO statements in any file was reduced by nearly a factor of five, while the
average number of GO TO statements per subprogram was nearly halved.

Most significant was the reduction in backward GO TO statements, which cause the logic paths
to become tangled and make subprograms harder to decipher. Backward GO TO statements were
reduced by more than a factor of six. Also, computed GO TO statements, which can be converted
to either CASE or multiple-branch IF statements, were reduced by greater than 14 times, and in
fact, nearly eliminated. The only remaining computed GO TO statements reside in subroutines
destined to be manually rewritten.

 Table II. Effect of streamlining on statement labels

Statement labels Before After Ratio
0 labels 99 273 0.36
10 or more labels 239 139 1.72
25 or more labels 112 68 1.65
100 or more labels 29 14 2.07
Total labels 12328 7005 1.76
Labels of formats 3751 3203 1.17
Non-format labels 8577 3802 2.26
NFL Avg./file 15.48 6.23 2.48
NFL Avg./subprogram 14.59 5.32 2.74
Maximum 594 258 2.30

Statement labels serve to mark the targets of GO TO statements, target of condition flags on read
statements, final statements of DO loops, and FORMAT statements of I/O statements. Reducing
the number of targets makes a subprogram easier to decipher and understand, although format
labels have less impact on readability because they do not influence logic flow paths. In Table II,
NFL stands for Non-Format Labels.

The reduction in statement labels was significant. The number of files with 100 or more labels
was more than halved. Files with no labels increased by a factor of 2.76. The total number of
non-format labels decreased by a factor of 2.26. Most significantly, the average non-format
labels per subprogram decreased by more than a factor of 2.74.

Finally, another important aspect of streamlining is application of a uniform style. A uniform
style was imposed by the FOR_STRUCT tool. Thus 100% of the files restructured with
FOR_STRUCT now conform to certain coding style rules.

3.6 Other Considerations

Some questions someone might want to ask before embarking upon a streamlining project with a
legacy code are the following:

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(14/16)

What does it cost?
Does it change the length of the source code?
What effect does it have on code portability?
What effect does it have on code runtime?

To make it worthwhile, it must be an effort that does not take very long and does not impact the
maintenance and development schedule. Ideally, it should be something that pays for itself over
time. We completed the work in 26 weeks, although that was spread over 14 months as most of
the work was carried out during two summers by laboratory intern and co-author Joshua Hykes.

Another consideration is the effect it has on code size. Normally, the number of lines remains
about the same or increases slightly when, for example, multiple returns are replaced by a single
point of return and GO TO statements that jump to it. Use of internal subroutines to preprocess
the file before applying the restructuring tool also adds a few lines for the following statements:
call, contains, and the internal subroutine’s return, end and header statements. However, removal
of dead coding, manual elimination of obsolete coding, and rewriting of subroutines can
significantly reduce the number of lines of code in individual subroutines.

Another consideration is code portability. Often the manual operations weed out machine
specific coding for old machines and operating systems that can be replaced by more modern
language constructs. The replacement of obsolescent features, such as arithmetic and computed
GO TO statements, improves portability and code longevity; there will come a time when an
ANSI Fortran standard deletes the currently obsolescent features.

Finally, code run time was not noticeably altered in any way. This was difficult to test as other
developments were ongoing simultaneously; however, when tested with just the streamlining
updates, before and after timings were virtually identical.

4. CONCLUSIONS

Streamlining is a process whose goal is to make a program more readable and understandable to
reduce maintenance and development costs. For legacy codes, this process becomes increasingly
necessary with age, size, and complexity. The process of streamlining the source code was
explained and illustrated with flowcharts. Streamlining was applied to RELAP5-3D and
measurements of the improvements were shown. With a reasonable amount of effort and without
affecting code calculations or runtime, significant improvements in readability were achieved.

ACKNOWLEDGMENTS

This work was funded by the International RELAP5 Users Group and authored by Battelle
Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. DOE.

REFERENCES

1. RELAP5-3D Code Development Team, “RELAP5-3D Code Manual,” INEEL-EXT-98-00834
Revision 2.4, Idaho National Laboratory, Jun, (2005).

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(15/16)

2. J. W. Spore, et al., “TRAC-M/Fortran 90 (Version 3.0) Theory Manual,” NUREG/CR-6724,
Los Alamos National Laboratory, Jul, (2001).

3. D. Bestion, G. Geffraye, “The CATHARE Code,” DTP/SMTH/LMDS/EM/2001-063,
Laboratoire de Modelization Diphasique et des Simulateurs, CEA, Apr, (2002).

4. J. H. McFadden, et al., “RETRAN-03 Code Manual,” EPRI NP-7450, May, (1992).
5. C. W. Stewart, et al, “COBRA-IV: The Model and the Method,” BNWL-2214, Pacific

Northwest Laboratory, (1997).
6. K. W. Washington, et al., “Reference Manual for the CONTAIN 1.1 Code for Containment

Severe Accident Analysis,” NUREG/CR5715, SAND91-0835, Sandia National Laboratory,
May, (1991).

7. R. O. Gauntt, et al., “MELCOR Computer Code Manuals,” NUREG/CR-6119, SAND2001-
0979P, Sandia National Laboratory, Apr, (2001).

8. X-5 Monte Carlo Team, “MCNP5 Monte Carlo N-Particle Transport Code System”, LA-UR-
03-1987, Los Alamo National Laboratory, Apr, (2003).

9. P. J. Roache, “Verification and Validation in Computational Science and Engineering,”
Hermos Publishers, NM, pp 23, (1998).

10. P. J. Turinsky, et al., “NESTLE: A Few-Group Neutron Diffusion Equation Solver Utilizing
the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady-State and
Transient Problems,” EGG-NRE-11406, Idaho National Engineering Laboratory, Jun, (1994).

11. G. L. Mesina, Border-Profile LU Solver for RELAP5-3D,” Proeedings. of the 1998
RELAP5 International Users Seminar, College Station, Texas, May 17-21, (1998).

12. D. M. Snider, K. L. Wagner, W. H. Grush, and K. R. Jones, “Nuclear Plant Analyzer,”
NUREG/CR-6291, INEL-94/0123, Idaho National Engineering Laboratory, Jan, (1995).

13. SIMPORT, https://www.ws-corp.com/wsc/presentations/3key/3keymaster.asp (2007).
14. J. A. Galbraith, and G. L. Mesina, “RELAP5/RGUI Architectural Framework,” Proceedings

of the 8th International Conference on Nuclear Energy, Baltimore, MD, USA, Apr 2-6
(2000).

15. SCDAP/RELAP5-3D Development Team, “SCDAP/ RELAP5-3D Code Manuals,” INEEL-
EXT-02-00589, Revision 2.2, Idaho National Engineering Laboratory, Oct, (2003).

16. W., L. Weaver, “The Application Programming Interface for the PVMEXEC Program and
Associated Code Coupling System PVMEXEC,” http://www.inl.gov/relap5/pvm_api.pdf,
INL/EXT-05-00107, Idaho National Engineering Laboratory, Mar, (2003).

17. C. B. Davis, T. D. Marshall, K. D. Weaver, “Modeling the GFR with RELAP5-3D,”
Proceedings of the 2005 RELAP5 International Users Seminar, Jackson Hole, WY, Sep, 7-9,
(2005).

18. C. B. Davis, “Implementation of Molten Salt Properties into RELAP5-3D/ATHENA,
INEEL/EXT-05-02658, Idaho National Engineering and Environmental Laboratory, Jan,
(2005).

19. C. Boehm and G. Jacopini, “Flow Figures, Turing Machines and Languages with only Two
Formation Rules”, Comunications. of the ACM, 9 (5), pp 366-371, (1966).

20. E. W. Dijkstra, “GOTO Statement Considered Harmful,” Communications of the ACM, 11,
(3), pp. 147-8, (1968).

21. General Services Administration, “The Definition of Structured Programming,” Federal
Standard 1037C, Telecom Glossary, (2000).

22. D. Knuth. “Structured Programming with go to Statements,” Computing Surveys, 6 (4), pp
261-301, (1974).

G. L. Mesina, J. M. Hykes, D. P. Guillen NURETH-12
Streamlining of the RELAP5-3D Code Log: 165

(16/16)

23. F. Rubin, “'GOTO Considered Harmful' Considered Harmful” (letter to the editor),
Communications of the ACM, 30, (3), pp. 195-196, (1987).

24. B. Hayes, “The Post-OOP Paradigm”, American Scientist 91 (2), pp 106-110, (2003).
25. Cobalt Blue, Inc., FOR_STRUCT®, Your FORTRAN Structuring Solution, 11585 Jones

Bridge Rd, Suite #420-306, Alpharetta, GA, 30005, USA, (1997).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

