231 research outputs found

    Near-threshold electron transfer in anion-nucleobase clusters : Does the identity of the anion matter?

    Get PDF
    Laser dissociation spectroscopy of I − ·adenine (I − ·A) and H 2 PO − 3 ·adenine (H 2 PO − 3 ·A) has been utilised for the first time to explore how the anion identity impacts on the excited states. Despite strong photodepletion, ionic photofragmentation is weak for both clusters, revealing that they decay predominantly by electron detachment. The spectra of I − ·A display a prominent dipole-bound excited state in the region of the detachment energy which relaxes to produce deprotonated adenine. In contrast, near-threshold photoexcitation of H 2 PO − 3 ·A does not access a dipole-bound state, but instead displays photofragmentation properties associated with ultrafast decay of an adenine-localised π→π* transition. Notably, the experimental electron detachment onset of H 2 PO − 3 ·A is around 4.7 eV, which is substantially lower than the expected detachment energy of an ion-dipole complex. The low value for H 2 PO − 3 ·A can be traced to initial ionisation of the adenine followed by significant geometric rearrangement on the neutral surface. We conclude that these dynamics quench access to a dipole-bound excited state for H 2 PO − 3 ·A and subsequent electron transfer. H 2 PO − 3 ·A represents an important new example of an ionic cluster where ionisation occurs from the neutral cluster component and where photodetachment initiates intra-molecular hydrogen atom transfer

    KLIC-score for predicting early failure in prosthetic joint infections treated with debridement, implant retention and antibiotics

    Get PDF
    AbstractDebridement, irrigation and antibiotic treatment form the current approach in early prosthetic joint infection (PJI). Our aim was to design a score to predict patients with a higher risk of failure. From 1999 to 2014 early PJIs were prospectively collected and retrospectively reviewed. The primary end-point was early failure defined as: 1) the need for unscheduled surgery, 2) death-related infection within the first 60 days after debridement or 3) the need for suppressive antibiotic treatment. A score was built-up according to the logistic regression coefficients of variables available before debridement. A total of 222 patients met the inclusion criteria. The most frequently isolated microorganisms were coagulase-negative staphylococci (95 cases, 42.8%) and Staphylococcus aureus (81 cases, 36.5%). Treatment of 52 (23.4%) cases failed. Independent predictors of failure were: chronic renal failure (OR 5.92, 95% CI 1.47–23.85), liver cirrhosis (OR 4.46, 95% CI 1.15–17.24), revision surgery (OR 4.34, 95% CI 1.34–14.04) or femoral neck fracture (OR 4.39, 95% CI1.16–16.62) compared with primary arthroplasty, C reactive protein >11.5 mg/dL (OR 12.308, 95% CI 4.56–33.19), cemented prosthesis (OR 8.71, 95% CI 1.95–38.97) and when all intraoperative cultures were positive (OR 6.30, 95% CI 1.84–21.53). A score for predicting the risk of failure was designed using preoperative factors (KLIC-score: Kidney, Liver, Index surgery, Cemented prosthesis and C-reactive protein value) and it ranged between 0 and 9.5 points. Patients with scores of ≀2, >2–3.5, 4–5, >5–6.5 and ≄7 had failure rates of 4.5%, 19.4%, 55%, 71.4% and 100%, respectively. The KLIC-score was highly predictive of early failure after debridement. In the future, it would be necessary to validate our score using cohorts from other institutions

    A transverse current rectification in graphene superlattice

    Full text link
    A model for energy spectrum of superlattice on the base of graphene placed on the striped dielectric substrate is proposed. A direct current component which appears in that structure perpendicularly to pulling electric field under the influence of elliptically polarized electromagnetic wave was derived. A transverse current density dependence on pulling field magnitude and on magnitude of component of elliptically polarized wave directed along the axis of a superlattice is analyzed.Comment: 12 pages, 6 figure

    Semantically Aware Text Categorisation for Metadata Annotation

    Get PDF
    In this paper we illustrate a system aimed at solving a longstanding and challenging problem: acquiring a classifier to automatically annotate bibliographic records by starting from a huge set of unbalanced and unlabelled data. We illustrate the main features of the dataset, the learning algorithm adopted, and how it was used to discriminate philosophical documents from documents of other disciplines. One strength of our approach lies in the novel combination of a standard learning approach with a semantic one: the results of the acquired classifier are improved by accessing a semantic network containing conceptual information. We illustrate the experimentation by describing the construction rationale of training and test set, we report and discuss the obtained results and conclude by drawing future work.</p

    Caspase-8 activation by cigarette smoke induces pro-inflammatory cell death of human macrophages exposed to lipopolysaccharide

    Get PDF
    Cigarette smoking impairs the lung innate immune response making smokers more susceptible to infections and severe symptoms. Dysregulation of cell death is emerging as a key player in chronic inflammatory conditions. We have recently reported that short exposure of human monocyte-derived macrophages (hMDMs) to cigarette smoke extract (CSE) altered the TLR4-dependent response to lipopolysaccharide (LPS). CSE caused inhibition of the MyD88-dependent inflammatory response and activation of TRIF/caspase-8/caspase-1 pathway leading to Gasdermin D (GSDMD) cleavage and increased cell permeability. Herein, we tested the hypothesis that activation of caspase-8 by CSE increased pro-inflammatory cell death of LPS-stimulated macrophages. To this purpose, we measured apoptotic and pyroptotic markers as well as the expression/release of pro-inflammatory mediators in hMDMs exposed to LPS and CSE, alone or in combination, for 6 and 24 h. We show that LPS/CSE-treated hMDMs, but not cells treated with CSE or LPS alone, underwent lytic cell death (LDH release) and displayed apoptotic features (activation of caspase-8 and -3/7, nuclear condensation, and mitochondrial membrane depolarization). Moreover, the negative regulator of caspase-8, coded by CFLAR gene, was downregulated by CSE. Activation of caspase-3 led to Gasdermin E (GSDME) cleavage. Notably, lytic cell death caused the release of the damage-associated molecular patterns (DAMPs) heat shock protein-60 (HSP60) and S100A8/A9. This was accompanied by an impaired inflammatory response resulting in inhibited and delayed release of IL6 and TNF. Of note, increased cleaved caspase-3, higher levels of GSDME and altered expression of cell death-associated genes were found in alveolar macrophages of smoker subjects compared to non-smoking controls. Overall, our findings show that CSE sensitizes human macrophages to cell death by promoting pyroptotic and apoptotic pathways upon encountering LPS. We propose that while the delayed inflammatory response may result in ineffective defenses against infections, the observed cell death associated with DAMP release may contribute to establish chronic inflammation. CS exposure sensitizes human macrophages to pro-inflammatory cell death. Upon exposure to LPS, CS inhibits the TLR4/MyD88 inflammatory response, downregulating the pro-inflammatory genes TNF and IL6 and the anti-apoptotic gene CFLAR, known to counteract caspase-8 activity. CS enhances caspase-8 activation through TLR4/TRIF, with a partial involvement of RIPK1, resulting on the activation of caspase-1/GSDMD axis leading to increased cell permeability and DAMP release through gasdermin pores [19]. At later timepoints caspase-3 becomes strongly activated by caspase-8 triggering apoptotic events which are associated with mitochondrial membrane depolarization, gasdermin E cleavage and secondary necrosis with consequent massive DAMP release

    Glecaprevir and pibrentasvir for 12 weeks for hepatitis C virus genotype 1 infection and prior direct-acting antiviral treatment: Poordad et al.

    Get PDF
    Although direct‐acting antiviral (DAA) therapies for chronic hepatitis C virus (HCV) infection have demonstrated high rates of sustained virologic response, virologic failure may still occur, potentially leading to the emergence of viral resistance, which can decrease the effectiveness of subsequent treatment. Treatment options for patients who failed previous DAA‐containing regimens, particularly those with nonstructural protein 5A inhibitors, are limited and remain an area of unmet medical need. This phase 2, open‐label study (MAGELLAN‐1) evaluated the efficacy and safety of glecaprevir (GLE) + pibrentasvir (PIB) ± ribavirin (RBV) in HCV genotype 1–infected patients with prior virologic failure to HCV DAA‐containing therapy. A total of 50 patients without cirrhosis were randomized to three arms: 200 mg GLE + 80 mg PIB (arm A), 300 mg GLE + 120 mg PIB with 800 mg once‐daily RBV (arm B), or 300 mg GLE + 120 mg PIB without RBV (arm C). By intent‐to‐treat analysis, sustained virologic response at posttreatment week 12 was achieved in 100% (6/6, 95% confidence interval 61‐100), 95% (21/22, 95% confidence interval 78‐99), and 86% (19/22, 95% confidence interval 67‐95) of patients in arms A, B, and C, respectively. Virologic failure occurred in no patients in arm A and in 1 patient each in arms B and C (two patients were lost to follow‐up in arm C). The majority of adverse events were mild in severity; no serious adverse events related to study drug and no relevant laboratory abnormalities in alanine aminotransferase, total bilirubin, or hemoglobin were observed. Conclusion: The combination of GLE and PIB was highly efficacious and well tolerated in patients with HCV genotype 1 infection and prior failure of DAA‐containing therapy; RBV coadministration did not improve efficacy. (Hepatology 2017;66:389–397)

    Pragmatic, open-label, single-center, randomized, phase II clinical trial to evaluate the efficacy and safety of methylprednisolone pulses and tacrolimus in patients with severe pneumonia secondary to COVID-19: the TACROVID trial protocol

    Get PDF
    Introduction: Some COVID-19 patients evolve to severe lung injury and systemic hyperinflammatory syndrome triggered by both the coronavirus infection and the subsequent host-immune response. Accordingly, the use of immunomodulatory agents has been suggested but still remains controversial. Our working hypothesis is that methylprednisolone pulses and tacrolimus may be an effective and safety drug combination for treating severe COVID-19 patients. Methods: and analysis: TACROVID is a randomized, open-label, single-center, phase II trial to evaluate the ef- ficacy and safety of methylprednisolone pulses and tacrolimus plus standard of care (SoC) versus SoC alone, in patients at advanced stage of COVID-19 disease with lung injury and systemic hyperinflammatory response. Patients are randomly assigned (1:1) to one of two arms (42 patients in each group). The primary aim is to assess the time to clinical stability after initiating randomization. Clinical stability is defined as body temperature≀37.5 ◩C, and PaO2/FiO2 > 400 and/or SatO2/FiO2 > 300, and respiratory rate ≀24 rpm; for 48 consecutive hours. Discussion: Methylprednisolone and tacrolimus might be beneficial to treat those COVID-19 patients progressing into severe pulmonary failure and systemic hyperinflammatory syndrome. The rationale for its use is the fast effect of methylprednisolone pulses and the ability of tacrolimus to inhibit both the CoV-2 replication and the secondary cytokine storm. Interestingly, both drugs are low-cost and can be manufactured on a large scale; thus, if effective and safe, a large number of patients could be treated in developed and developing countries

    Characterization of Novel Pathogenic Variants Leading to Caspase-8 Cleavage-Resistant RIPK1-Induced Autoinflammatory Syndrome

    Get PDF
    Pathogenic RIPK1 variants have been described as the cause of two different inborn errors of immunity. Biallelic loss-of-function variants cause the recessively inherited RIPK1 deficiency, while monoallelic variants impairing the caspase-8-mediated RIPK1 cleavage provoke a novel autoinflammatory disease (AID) called cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome. The aim of this study was to characterize the pathogenicity of two novel RIPK1 variants located at the cleavage site of caspase-8 detected in patients with dominantly-inherited, early-onset undefined AID. RIPK1 genotyping was performed by Sanger and next-generation sequencing. Clinical and analytical data were collected from medical charts, and in silico and in vitro assays were performed to evaluate the functional consequences. Genetic analyses identified two novel heterozygous RIPK1 variants at the caspase-8 cleavage site (p.Leu321Arg and p.Asp324Gly), which displayed a perfect intrafamilial phenotype-genotype segregation following a dominant inheritance pattern. Structural analyses suggested that these variants disrupt the normal RIPK1 structure, probably making it less accessible to and/or less cleavable by caspase-8. In vitro experiments confirmed that the p.Leu321Arg and p.Asp324Gly RIPK1 variants were resistant to caspase-8-mediated cleavage and induced a constitutive activation of necroptotic pathway in a similar manner that previously characterized RIPK1 variants causing CRIA syndrome. All these results strongly supported the pathogenicity of the two novel RIPK1 variants and the diagnosis of CRIA syndrome in all enrolled patients. Moreover, the evidences here collected expand the phenotypic and genetic diversity of this recently described AID, and provide interesting data about effectiveness of treatments that may benefit future patients
    • 

    corecore