827 research outputs found

    Draft Genome of Janthinobacterium sp. RA13 Isolated from Lake Washington Sediment.

    Get PDF
    Sequencing the genome of Janthinobacterium sp. RA13 from Lake Washington sediment is announced. From the genome content, a versatile life-style is predicted, but not bona fide methylotrophy. With the availability of its genomic sequence, Janthinobacterium sp. RA13 presents a prospective model for studying microbial communities in lake sediments

    Draft Genome of Pseudomonas sp. Strain 11/12A, Isolated from Lake Washington Sediment.

    Get PDF
    We announce here the genome sequencing of Pseudomonas sp. strain 11/12A from Lake Washington sediment. From the genome content, a versatile lifestyle is predicted but not one of bona fide methylotrophy. With the availability of its genomic sequence, Pseudomonas sp. 11/12A presents a prospective model for studying microbial communities in lake sediments

    Draft genomes of two strains of flavobacterium isolated from lake washington sediment.

    Get PDF
    We report sequencing the genomes of two new Flavobacterium strains isolated from Lake Washington sediment. From genomic contents, versatile lifestyles were predicted but not bona fide methylotrophy. With the availability of their genomic sequences, the new Flavobacterium strains present prospective models for studying microbial communities in lake sediments

    Draft genome sequences of five new strains of methylophilaceae isolated from lake washington sediment.

    Get PDF
    We sequenced the genomes of five new Methylophilaceae strains isolated from Lake Washington sediment. We used the new sequences to sort these new strains into specific Methylophilaceae ecotypes, including one novel ecotype. The new genomes expand the known diversity of Methylophilaceae and provide new models for studying the ecology of methylotrophy

    Draft genome sequences of gammaproteobacterial methanotrophs isolated from lake washington sediment.

    Get PDF
    The genomes of Methylosarcina lacus LW14(T) (=ATCC BAA-1047(T) = JCM 13284(T)), Methylobacter sp. strain 21/22, Methylobacter sp. strain 31/32, Methylomonas sp. strain LW13, Methylomonas sp. strain MK1, and Methylomonas sp. strain 11b were sequenced and are reported here. All the strains are obligately methanotrophic bacteria isolated from the sediment of Lake Washington

    The expanded diversity of methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes.

    Get PDF
    We describe five novel Methylophilaceae ecotypes from a single ecological niche in Lake Washington, USA, and compare them to three previously described ecotypes, in terms of their phenotype and genome sequence divergence. Two of the ecotypes appear to represent novel genera within the Methylophilaceae. Genome-based metabolic reconstruction highlights metabolic versatility of Methylophilaceae with respect to methylotrophy and nitrogen metabolism, different ecotypes possessing different combinations of primary substrate oxidation systems (MxaFI-type methanol dehydrogenase versus XoxF-type methanol dehydrogenase; methylamine dehydrogenase versus N-methylglutamate pathway) and different potentials for denitrification (assimilatory versus respiratory nitrate reduction). By comparing pairs of closely related genomes, we uncover that site-specific recombination is the main means of genomic evolution and strain divergence, including lateral transfers of genes from both closely- and distantly related taxa. The new ecotypes and the new genomes contribute significantly to our understanding of the extent of genomic and metabolic diversity among organisms of the same family inhabiting the same ecological niche. These organisms also provide novel experimental models for studying the complexity and the function of the microbial communities active in methylotrophy

    Astrophysics and Technical Study of a Solar Neutrino Spacecraft

    Get PDF
    We report on our study of the design of a neutrino detector, shielding and veto array needed to operate a neutrino detector in space close to the Sun. This study also took into account the expected rates of Galactic gamma and cosmic rays in addition to the particles from the Sun.These preliminary studies show that we can devise a detector such that a small signal of neutrino interactions can be extracted from a large random number of events from the background sources using a double timing method from the conversion electron produced in the neutrino interaction and a secondary delayed signal from the nuclear excited state produced from the initial neutrino interaction; in our case the conversion of Ga 69 or 71 into Ge 69 or 71, but this method could apply to other nuclei with large neutrino cross sections such as Ir 115. Although these types of events need to be above 0.405 megaelectronvolt (MeV) neutrino energy and are only 66 percent of all conversion neutrino interactions on Gallium, this is a small price to pay for an increase of 10,000 by going close to the Sun to enhance the neutrino rate over the background combatorical fake-signal events. The conclusion of this Phase-1 study is very positive in that we can get the backgrounds less than 20 percent fake signals, and in addition to this we have devised another shielding method that makes the Galactic gamma-ray rate a hundred fold less which will make further improvements over these initial estimates. Although these studies are very encouraging it suggests that the next step is a NIAC Phase-II to actually build a test device,measuring basic principles such as light attention within the scintillator with high dopants and to take data in the lab with a cosmic-ray test stand and triggered X-ray source for comparison with simulated expected performance of the detector. This would be the perfect lead into a future proposal beyond a NIAC (NASA Innovative Advanced Concepts) Phase-II for a test flight of a small one-pint detector in orbit of the detector concept beyond Earth outside of the radiation belts

    The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects

    Get PDF
    In insects, the homologue of the Down syndrome cell adhesion molecule (Dscam) is a unique case of a single-locus gene whose expression has extensive somatic diversification in both the nervous and immune systems. How this situation evolved is best understood through comparative studies. We describe structural, expression, and evolutionary aspects of a Dscam homolog in 2 species of the crustacean Daphnia. The Dscam of Daphnia generates up to 13,000 different transcripts by the alternative splicing of variable exons. This extends the taxonomic range of a highly diversified Dscam beyond the insects. Additionally, we have identified 4 alternative forms of the cytoplasmic tail that generate isoforms with or without inhibitory or activating immunoreceptor tyrosine-based motifs (ITIM and ITAM respectively), something not previously reported in insect's Dscam. In Daphnia, we detected exon usage variability in both the brain and hemocytes ( the effector cells of immunity), suggesting that Dscam plays a role in the nervous and immune systems of crustaceans, as it does in insects. Phylogenetic analysis shows a high degree of amino acid conservation between Daphnia and insects except in the alternative exons, which diverge greatly between these taxa. Our analysis shows that the variable exons diverged before the split of the 2 Daphnia species and is in agreement with the nearest-neighbor model for the evolution of the alternative exons. The genealogy of the Dscam gene family from vertebrates and invertebrates confirmed that the highly diversified form of the gene evolved from a nondiversified form before the split of insects and crustaceans
    • …
    corecore