120 research outputs found

    A Lagrangian Stochastic Model for the concentration fluctuations

    No full text
    International audienceA Lagrangian Stochastic Model for the two-particles dispersion, aiming at simulating the pollutant concentration fluctuations, is presented. Three model versions (1-D, 2-D and 3-D) are tested. Firstly the ability of the model to reproduce the two-particle statistics in a homogeneous isotropic turbulence is discussed, comparing the model results with theoretical predictions in terms of the probability density function (PDF) of the particles separation and its statistics. Then, the mean concentration and its fluctuations are considered and the results presented. The influence of the PDF of the particle separation on the concentration fluctuations is shown and discussed. We found that the separation PDF in the inertial subrange is not gaussian and this fact influences the predicted concentration fluctuations

    Simulation of the scalar transport above and within the Amazon forest canopy

    Get PDF
    The parallelized large-eddy simulation model (PALM) was used to understand better the turbulent exchanges of a passive scalar above and within a forested region located in the central Amazon. Weak (2 ms−1) and strong (6 ms−1) wind conditions were simulated. A passive scalar source was introduced to the forest floor for both simulations. The simulations reproduced the main characteristics of the turbulent flow and of the passive scalar transport between the forest and the atmosphere. Noteworthily, strong and weak wind conditions presented different turbulence structures that drove different patterns of scalar exchange both within and above the forest. These results show how passive scalar concentration is influenced by the wind speed at the canopy top. Additionally, higher wind speeds are related to stronger sweep and ejection regimes, generating more intense plumes that are able to reduce the passive scalar concentration inside the forest canopy. This work was the first that used PALM to investigate scalar transport between the Amazon rainforest and the atmosphere

    Efficacy of mRNA anti-SARS-CoV-2 vaccination and dynamics of humoral immune response in patients with solid tumors: results from the institutional registry of an italian tertiary cancer center

    Get PDF
    Background: Systemic immunosuppression characterizing cancer patients represents a concern regarding the efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, and real-world evidence is needed to define the efficacy and the dynamics of humoral immune response to mRNA-based anti-SARS-CoV-2 vaccines. Methods: We conducted an observational study that included patients with solid tumors who were candidates for mRNA anti-SARS-CoV-2 vaccination at the Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. The primary objective was to monitor the immunologic response to the mRNA anti-SARS-CoV-2 vaccination in terms of anti-spike antibody levels. All the patients received two doses of the mRNA-1273 vaccine or the BNT162b2 vaccine. Healthcare workers served as a control group of healthy subjects. Results: Among the 243 patients included in the present analysis, 208 (85.60%) and 238 (97.94%) resulted seroconverted after the first and the second dose of vaccine, respectively. Only five patients (2.06%) had a negative titer after the second dose. No significant differences in the rate of seroconversion after two vaccine doses were observed in patients as compared with the control group of healthy subjects. Age and anticancer treatment class had an independent impact on the antibody titer after the second dose of vaccination. In a subgroup of 171 patients with available data about the third timepoint, patients receiving immunotherapy with immune checkpoint inhibitors seem to have a higher peak of antibodies soon after the second dose (3 weeks after), but a more pronounced decrease at a late timepoint (3 months after). Conclusions: The systemic immunosuppression characterizing cancer patients did not seem to dramatically affect the humoral response to anti-SARS-CoV-2 mRNA vaccines in our population of patients with solid tumors. Further investigation is needed to dissect the interplay between immunotherapy and longitudinal dynamics of humoral response to mRNA vaccines, as well as to analyze the cellular response to mRNA vaccines in cancer patients

    Dendritic cell viability is decreased after phagocytosis of apoptotic tumor cells induced by staurosporine or vaccinia virus infection

    Get PDF
    Background and Objectives. Dendritic cells (DC) primed with tumor antigens can effectively mediate the regression of a variety of established solid malignancies in both murine and human models. Several experimental studies indicate that apoptotic bodies are an optimal source of tumor antigens for ex vivo priming of DC. However, the clinical use of killed tumor cells as a source of antigens will require an optimal methodology to induce effective tumor cell apoptosis. Design and Methods. The goal of this study was to compare the efficiency of three agents for inducing neoplastic B lymphocyte apoptosis; staurosporine, infection by modified vaccinia (MVA) viral particles and ultraviolet C (UVC) radiation. Results. The three methods were finely tuned to induce apoptosis in more than 90% of tumor cells after 24 hours of exposure. However, the viability of monocyte-derived DC, loaded with B-cell tumor apoptotic bodies induced by staurosporine or MVA viral particles, decreased dramatically within 48 hours after phagocytosis of the killed neoplastic cells. The persistence of the apoptosis-inducing agents in the apoptotic bodies and not in the tumor supernatant, was responsible for the observed damage to DC viability. In contrast, DC viability was not affected after uptake of tumor cells killed through UVC-irradiation. Furthermore, B-lymphoblastic cell line (LCL)-specific T cells were reactivated by DC loaded with apoptotic bodies induced by UVC-rays. Interpretation and Conclusions. Since the method used to induce tumor cell apoptosis might be detrimental to DC viability, these findings should be considered when designing anticancer vaccination programs
    • …
    corecore