163 research outputs found

    Glubodies: randomized libraries of glutathione transferase enzymes

    Get PDF
    AbstractBackground: The immunoglobulin framework has been mutagenized to engineer recombinant libraries of proteins as potential diagnostics and novel catalysts, although the often shallow binding cleft may limit the utility of this framework for binding diverse small organic molecules. By contrast, the glutathione S-transferase (GST) family of enzymes contains a deep binding cleft, which has evolved to accommodate a broad range of hydrophobic xenobiotics. We set out to determine whether GST molecules with novel ligand-binding characteristics could be produced by random mutagenesis of segments of the binding cleft.Results: We have identified two ligand-recognition segments (LRSs) in human GST P1, which are near the active site in the folded protein, but have characteristics indicating that the integrity of their sequence is not essential for the overall structure or activity of the protein. Libraries of GST P1-derived proteins were produced by substituting randomized sequences for an LRS or inserting random sequences into an LRS. The recombinant proteins in the libraries, collectively designated as ‘glubodies,’ generally retain enzymatic activity but differ markedly both from each other and from the parent enzyme in sensitivity to inhibition by diverse small organic compounds. In some instances, a glubody is inhibited by completely novel structures.Conclusions: We have shown that a non-antibody framework can be used to create large libraries of proteins with a wide range of binding specificities for small organic molecules. The glubodies provide a rich source of data for correlating the structural and functional features of proteins relevant to ligand binding. The criteria applied for identifying an LRS in GST P1 are generally applicable to other protein frameworks

    Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface

    Get PDF
    Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging

    Discovering patterns in drug-protein interactions based on their fingerprints

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovering of interesting patterns in drug-protein interaction data at molecular level can reveal hidden relationship among drugs and proteins and can therefore be of paramount importance for such application as drug design. To discover such patterns, we propose here a computational approach to analyze the molecular data of drugs and proteins that are known to have interactions with each other. Specifically, we propose to use a data mining technique called <it>Drug-Protein Interaction Analysis </it>(<it>D-PIA</it>) to determine if there are any commonalities in the fingerprints of the substructures of interacting drug and protein molecules and if so, whether or not any patterns can be generalized from them.</p> <p>Method</p> <p>Given a database of drug-protein interactions, <it>D-PIA </it>performs its tasks in several steps. First, for each drug in the database, the fingerprints of its molecular substructures are first obtained. Second, for each protein in the database, the fingerprints of its protein domains are obtained. Third, based on known interactions between drugs and proteins, an interdependency measure between the fingerprint of each drug substructure and protein domain is then computed. Fourth, based on the interdependency measure, drug substructures and protein domains that are significantly interdependent are identified. Fifth, the existence of interaction relationship between a previously unknown drug-protein pairs is then predicted based on their constituent substructures that are significantly interdependent.</p> <p>Results</p> <p>To evaluate the effectiveness of <it>D-PIA</it>, we have tested it with real drug-protein interaction data. <it>D-PIA </it>has been tested with real drug-protein interaction data including enzymes, ion channels, and protein-coupled receptors. Experimental results show that there are indeed patterns that one can discover in the interdependency relationship between drug substructures and protein domains of interacting drugs and proteins. Based on these relationships, a testing set of drug-protein data are used to see if <it>D-PIA </it>can correctly predict the existence of interaction between drug-protein pairs. The results show that the prediction accuracy can be very high. An AUC score of a ROC plot could reach as high as 75% which shows the effectiveness of this classifier.</p> <p>Conclusions</p> <p><it>D-PIA </it>has the advantage that it is able to perform its tasks effectively based on the fingerprints of drug and protein molecules without requiring any 3D information about their structures and <it>D-PIA </it>is therefore very fast to compute. <it>D-PIA </it>has been tested with real drug-protein interaction data and experimental results show that it can be very useful for predicting previously unknown drug-protein as well as protein-ligand interactions. It can also be used to tackle problems such as ligand specificity which is related directly and indirectly to drug design and discovery.</p

    Acute cholecystitis in high risk surgical patients: percutaneous cholecystostomy versus laparoscopic cholecystectomy (CHOCOLATE trial): Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laparoscopic cholecystectomy in acute calculous cholecystitis in high risk patients can lead to significant morbidity and mortality. Percutaneous cholecystostomy may be an alternative treatment option but the current literature does not provide the surgical community with evidence based advice.</p> <p>Methods/Design</p> <p>The CHOCOLATE trial is a randomised controlled, parallel-group, superiority multicenter trial. High risk patients, defined as APACHE-II score 7-14, with acute calculous cholecystitis will be randomised to laparoscopic cholecystectomy or percutaneous cholecystostomy. During a two year period 284 patients will be enrolled from 30 high volume teaching hospitals. The primary endpoint is a composite endpoint of major complications within three months following randomization and need for re-intervention and mortality during the follow-up period of one year. Secondary endpoints include all other complications, duration of hospital admission, difficulty of procedures and total costs.</p> <p>Discussion</p> <p>The CHOCOLATE trial is designed to provide the surgical community with an evidence based guideline in the treatment of acute calculous cholecystitis in high risk patients.</p> <p>Trial Registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2666">NTR2666</a></p

    ChemBank: a small-molecule screening and cheminformatics resource database

    Get PDF
    ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector

    One-Step Purification of Recombinant Human Amelogenin and Use of Amelogenin as a Fusion Partner

    Get PDF
    Amelogenin is an extracellular protein first identified as a matrix component important for formation of dental enamel during tooth development. Lately, amelogenin has also been found to have positive effects on clinical important areas, such as treatment of periodontal defects, wound healing, and bone regeneration. Here we present a simple method for purification of recombinant human amelogenin expressed in Escherichia coli, based on the solubility properties of amelogenin. The method combines cell lysis with recovery/purification of the protein and generates a >95% pure amelogenin in one step using intact harvested cells as starting material. By using amelogenin as a fusion partner we could further demonstrate that the same method also be can explored to purify other target proteins/peptides in an effective manner. For instance, a fusion between the clinically used protein PTH (parathyroid hormone) and amelogenin was successfully expressed and purified, and the amelogenin part could be removed from PTH by using a site-specific protease

    Avoidable mortality from giving tranexamic acid to bleeding trauma patients: an estimation based on WHO mortality data, a systematic literature review and data from the CRASH-2 trial

    Get PDF
    BACKGROUND: The CRASH-2 trial showed that early administration of tranexamic acid (TXA) safely reduces mortality in bleeding in trauma patients. Based on data from the CRASH-2 trial, global mortality data and a systematic literature review, we estimated the number of premature deaths that might be averted every year worldwide through the use of TXA. METHODS: We used CRASH-2 trial data to examine the effect of TXA on death due to bleeding by geographical region. We used WHO mortality data (2008) and data from a systematic review of the literature to estimate the annual number of in-hospital trauma deaths due to bleeding. We then used the relative risk estimates from the CRASH-2 trial to estimate the number of premature deaths that could be averted if all hospitalised bleeding trauma patients received TXA within one hour of injury, and within three hours of injury. Sensitivity analyses were used to explore the effect of uncertainty in the parameter estimates and the assumptions made in the model. RESULTS: There is no evidence that the effect of TXA on death due to bleeding varies by geographical region (heterogeneity p = 0.70). Based on WHO data and our systematic literature review, we estimate that each year worldwide there are approximately 400,000 in-hospital trauma deaths due to bleeding. If patients received TXA within one hour of injury then approximately 128,000 (uncertainty range [UR] ≈ 72,000 to 172,000) deaths might be averted. If patients received TXA within three hours of injury then approximately 112,000 (UR ≈ 68,000 to 148,000) deaths might be averted. Country specific estimates show that the largest numbers of deaths averted would be in India and China. CONCLUSIONS: The use of TXA in the treatment of traumatic bleeding has the potential to prevent many premature deaths every year. A large proportion of the potential health gains are in low and middle income countries
    corecore