4,078 research outputs found
The XMM Newton and INTEGRAL observations of the supergiant fast X-ray transient IGR J16328-4726
The accretion mechanism producing the short flares observed from the
Supergiant Fast X-ray Transients (SFXT) is still highly debated and forms a
major part in our attempts to place these X-ray binaries in the wider context
of the High Mass X-ray Binaries.
We report on a 216 ks INTEGRAL observation of the SFXT IGR J16328-4726
(August 24-27, 2014) simultaneous with two fixed-time observations with XMM
Newton (33ks and 20ks) performed around the putative periastron passage, in
order to investigate the accretion regime and the wind properties during this
orbital phase. During these observations, the source has shown luminosity
variations, from 4x10^{34} erg/s to 10^{36} erg/s, linked to spectral
properties changes. The soft X-ray continuum is well modeled by a power law
with a photon index varying from 1.2 up to 1.7 and with high values of the
column density in the range 2-4x10^{23}/cm^2. We report on the presence of iron
lines at 6.8-7.1 keV suggesting that the X-ray flux is produced by accretion of
matter from the companion wind characterized by density and temperature
inhomogeneities
Slope monitoring at the Glan Ebbw Landslide, Blaina, South Wales: January to April 2016
This report describes survey work carried out at a landslide site in Blaina, West Side, South Wales between January and April 2016. The Terrestrial Laser Scan (LiDAR) and GPS survey of ground pins was undertaken and funded by the British Geological Survey (BGS). The aim was to provide Blaenau Gwent Council Environment Department with a survey baseline against which further ground movement can be assessed and data for research purposes
Impact of Gamification of Vision Tests on the User Experience
Objective: Gamification has been incorporated into vision tests and vision therapies in the expectation that it may increase the user experience and engagement with the task. The current study aimed to understand how gamification affects the user experience, specifically during the undertaking of psychophysical tasks designed to estimate vision thresholds (chromatic and achromatic contrast sensitivity). Methods: Three tablet computer-based games were developed with three levels of gaming elements. Game 1 was designed to be a simple clinical test (no gaming elements), game 2 was similar to game 1 but with added gaming elements (i.e., feedback, scores, and sounds), and game 3 was a complete game. Participants (N = 144, age: 9.9-42 years) played three games in random order. The user experience for each game was assessed using a Short Feedback Questionnaire. Results: The median (interquartile range) fun level for the three games was 2.5 (1.6), 3.9 (1.7), and 2.5 (2.8), respectively. Overall, participants reported greater fun level and higher preparedness to play the game again for game 2 than games 1 and 3 (P < 0.05). There were significant positive correlations observed between fun level and preparedness to play the game again for all the games (p < 0.05). Engagement (assessed as completion rates) did not differ between the games. Conclusion: Gamified version (game 2) was preferred to the other two versions. Over the short term, the careful application of gaming elements to vision tests was found to increase the fun level of users, without affecting engagement with the vision test
Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass-asymmetry
Correlation functions and transport coefficients of self-diffusion and shear
viscosity of a binary Lennard-Jones mixture with components differing only in
their particle mass are studied up to high values of the mass ratio ,
including the limiting case , for different mole fractions .
Within a large range of and the product of the diffusion coefficient
of the heavy species and the total shear viscosity of the mixture
is found to remain constant, obeying a generalized Stokes-Einstein
relation. At high liquid density, large mass ratios lead to a pronounced cage
effect that is observable in the mean square displacement, the velocity
autocorrelation function and the van Hove correlation function
Normative values for a tablet computer-based application to assess chromatic contrast sensitivity
Tablet computer displays are amenable for the development of vision tests in a portable form. Assessing color vision using an easily accessible and portable test may help in the self-monitoring of vision-related changes in ocular/systemic conditions and assist in the early detection of disease processes. Tablet computer-based games were developed with different levels of gamification as a more portable option to assess chromatic contrast sensitivity. Game 1 was designed as a clinical version with no gaming elements. Game 2 was a gamified version of game 1 (added fun elements: feedback, scores, and sounds) and game 3 was a complete game with vision task nested within. The current study aimed to determine the normative values and evaluate repeatability of the tablet computer-based games in comparison with an established test, the Cambridge Colour Test (CCT) Trivector test. Normally sighted individuals [N = 100, median (range) age 19.0 years (18–56 years)] had their chromatic contrast sensitivity evaluated binocularly using the three games and the CCT. Games 1 and 2 and the CCT showed similar absolute thresholds and tolerance intervals, and game 3 had significantly lower values than games 1, 2, and the CCT, due to visual task differences. With the exception of game 3 for blue-yellow, the CCT and tablet computer-based games showed similar repeatability with comparable 95% limits of agreement. The custom-designed games are portable, rapid, and may find application in routine clinical practice, especially for testing younger populations
Computer Simulation Study of the Phase Behavior and Structural Relaxation in a Gel-Former Modeled by Three Body Interactions
We report a computer simulation study of a model gel-former obtained by
modifying the three-body interactions of the Stillinger-Weber potential for
silicon. This modification reduces the average coordination number and
consequently shifts the liquid-gas phase coexistence curve to low densities,
thus facilitating the formation of gels without phase separation. At low
temperatures and densities, the structure of the system is characterized by the
presence of long linear chains interconnected by a small number of three
coordinated junctions at random locations. At small wave-vectors the static
structure factor shows a non-monotonic dependence on temperature, a behavior
which is due to the competition between the percolation transition of the
particles and the stiffening of the formed chains. We compare in detail the
relaxation dynamics of the system as obtained from molecular dynamics with the
one obtained from Monte Carlo dynamics. We find that the bond correlation
function displays stretched exponential behavior at moderately low temperatures
and densities, but exponential relaxation at low temperatures. The bond
lifetime shows an Arrhenius behavior, independent of the microscopic dynamics.
For the molecular dynamics at low temperatures, the mean squared displacement
and the (coherent and incoherent) intermediate scattering function display at
intermediate times a dynamics with ballistic character and we show that this
leads to compressed exponential relaxation. For the Monte Carlo dynamics we
find always an exponential or stretched exponential relaxation. Thus we
conclude that the compressed exponential relaxation observed in experiments is
due to the out-of-equilibrium dynamics
Liquid heat capacity in the approach from the solid state: anharmonic theory
Calculating liquid energy and heat capacity in general form is an open
problem in condensed matter physics. We develop a recent approach to liquids
from the solid state by accounting for the contribution of anharmonicity and
thermal expansion to liquid energy and heat capacity. We subsequently compare
theoretical predictions to the experiments results of 5 commonly discussed
liquids, and find a good agreement with no free fitting parameters. We discuss
and compare the proposed theory to previous approaches.Comment: 8 pages, 6 figure
Protein-DNA charge transport: Redox activation of a DNA repair protein by guanine radical
DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S](2+) cluster of MutY to [4Fe-4S](3+) and its decomposition product [3Fe-4S](1+). Flash/quench experiments monitored by EPR spectroscopy reveal spectra with g = 2.08, 2.06, and 2.02, characteristic of the oxidized clusters. Transient absorption spectra of poly(dGC) and [Ru(phen)(2)dppz](3+) (dppz = dipyridophenazine), generated in situ, show an absorption characteristic of the guanine radical that is depleted in the presence of MutY with formation instead of a long-lived species with an absorption at 405 nm; we attribute this absorption also to formation of the oxidized [4Fe-4S](3+) and [3Fe4S](1+) clusters. In ruthenium-tethered DNA assemblies, oxidative damage to the 5'-G of a 5'-GG-3' doublet is generated from a distance but this irreversible damage is inhibited by MutY and instead EPR experiments reveal cluster oxidation. With ruthenium-tethered assemblies containing duplex versus single-stranded regions, MutY oxidation is found to be mediated by the DNA duplex, with guanine radical as an intermediate oxidant; guanine radical formation facilitates MutY oxidation. A model is proposed for the redox activation of DNA repair proteins through DNA CT, with guanine radicals, the first product under oxidative stress, in oxidizing the DNA-bound repair proteins, providing the signal to stimulate DNA repair
Environmental factors shaping the ecological niches of ammonia-oxidizing archaea
For more than 100 years it was believed that bacteria were the only group responsible for the oxidation of ammonia. However, recently, a new strain of archaea bearing a putative ammonia monooxygenase subunit A (amoA) gene and able to oxidize ammonia was isolated from a marine aquarium tank. Ammonia-oxidizing archaea (AOA) were subsequently discovered in many ecosystems of varied characteristics and even found as the predominant causal organisms in some environments. Here, we summarize the current knowledge on the environmental conditions related to the presence of AOA and discuss the possible site-related properties. Considering these data, we deduct the possible niches of AOA based on pH, sulfide and phosphate levels. It is proposed that the AOA might be important actors within the nitrogen cycle in low-nutrient, low-pH, and sulfide-containing environments
Wave spectra of 2D dusty plasma solids and liquids
Brownian dynamics simulations were carried out to study wave spectra of
two-dimensional dusty plasma liquids and solids for a wide range of
wavelengths. The existence of a longitudinal dust thermal mode was confirmed in
simulations, and a cutoff wavenumber in the transverse mode was measured.
Dispersion relations, resulting from simulations, were compared with those from
analytical theories, such as the random-phase approximation (RPA),
quasi-localized charged approximation (QLCA), and harmonic approximation (HA).
An overall good agreement between the QLCA and simulations was found for wide
ranges of states and wavelengths after taking into account the direct thermal
effect in the QLCA, while for the RPA and HA good agreement with simulations
were found in the high and low temperature limits, respectively.Comment: 26 pages, 9 figure
- …