1,148 research outputs found

    One-Loop n-Point Helicity Amplitudes in (Self-Dual) Gravity

    Full text link
    We present an ansatz for all one-loop amplitudes in pure Einstein gravity for which the n external gravitons have the same outgoing helicity. These loop amplitudes, which are rational functions of the momenta, also arise in the quantization of self-dual gravity in four-dimensional Minkowski space. Our ansatz agrees with explicit computations via D-dimensional unitarity cuts for n less than or equal to 6. It also has the expected analytic behavior, for all n, as a graviton becomes soft, and as two momenta become collinear. The gravity results are closely related to analogous amplitudes in (self-dual) Yang-Mills theory.Comment: Latex2e, 13 pages with 2 encapsulated figures. Minor corrections mad

    Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    Get PDF
    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late

    Multiphoton Production at High Energies in the Standard Model I

    Full text link
    We examine multiphoton production in the electroweak sector of the Standard Model in the high energy limit using the equivalence theorem in combination with spinor helicity techniques. We obtain recursion relations for currents consisting of a charged scalar, spinor, or vector line that radiates nn photons. Closed form solutions to these recursion relations for arbitrary nn are presented for the cases of like-helicity and one unlike-helicity photon production. We apply the currents singly and in pairs to obtain amplitudes for processes involving the production of nn photons with up to two unlike helicities from a pair of charged particles. The replacement of one or more photons by transversely polarized Z$-bosons is also discussed.Comment: 75 pages, CLNS 91/111

    Standard Model Top Quark Asymmetry at the Fermilab Tevatron

    Full text link
    Top quark pair production at proton-antiproton colliders is known to exhibit a forward-backward asymmetry due to higher-order QCD effects. We explore how this asymmetry might be studied at the Fermilab Tevatron, including how the asymmetry depends on the kinematics of extra hard partons. We consider results for top quark pair events with one and two additional hard jets. We further note that a similar asymmetry, correlated with the presence of jets, arises in specific models for parton showers in Monte Carlo simulations. We conclude that the measurement of this asymmetry at the Tevatron will be challenging, but important both for our understanding of QCD and for our efforts to model it.Comment: 26 p., 10 embedded figs., comment added, version to appear in PR

    The Analysis of Multijet Events Produced at High Energy Hadron Colliders

    Get PDF
    We define and discuss a set of (4N - 4) parameters that can be used to analyse events in which N jets have been produced in high energy hadron-hadron collisions. These multijet variables are the multijet mass and (4N - 5) independent dimensionless parameters. To illustrate the use of the variables QCD predictions are presented for events with up to five jets produced at the Fermilab Tevatron Proton-Antiproton Collider. These QCD predictions are compared with the predictions of a model in which multijet events uniformly populate the N-body phase-space

    Special case of sunset: reduction and epsilon-expansion

    Full text link
    We consider two loop sunset diagrams with two mass scales m and M at the threshold and pseudotreshold that cannot be treated by earlier published formula. The complete reduction to master integrals is given. The master integrals are evaluated as series in ratio m/M and in epsilon with the help of differential equation method. The rules of asymptotic expansion in the case when q^2 is at the (pseudo)threshold are given.Comment: LaTeX, 13 pages, 1 figur

    Detection of Neutral MSSM Higgs Bosons at LEP-II and NLC

    Get PDF
    We study the possibility of detecting the neutral Higgs bosons predicted in the Minimal Supersymmetric Standard Model (h0, H0, A0), with the reactions e+ e- --> b b h0 (H0, A0), using the helicity formalism. We analyze the region of parameter space (m_A0-tan beta) where h0(H0, A0) could be detected in the limit when tan beta is large. The numerical computation is done for the energy which is expected to be available at LEP-II (sqrt{s} = 200 GeV) and for a possible Next Linear e+ e- Collider (sqrt{s}=500 GeV).Comment: To be published in Phys.Rev.

    Multiple Interactions in Two-Photon Collisions

    Get PDF
    We compute cross sections for events where two pairs of partons scatter off each other in the same γγ\gamma\gamma reaction, giving rise to at least 3 high--{\mbox{pTp_T^{}}} jets. Unlike in {\mbox{ppˉp \bar p}}\ collisions we find the signal to lie well above the background from higher order QCD processes. If the usual ``eikonaliztion" assumption is correct, the signal should be readily observable at LEP2, and might already be detectable in data taken at TRISTAN.Comment: 8 pages, plain LaTeX, 2 figures (not included). A compressed PS file of the entire paper, including figures, can be obtained via anonymous ftp from ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-921.ps.

    Tree-Level Unitarity Constraints on the Gravitational Couplings of Higher-Spin Massive Fields

    Get PDF
    We analyse the high-energy behavior of tree-level graviton Compton amplitudes for particles of mass m and arbitrary spin, concentrating on a combination of forward amplitudes that will be unaffected by eventual cross- couplings to other, higher spins. We first show that for any spin larger than 2, tree-level unitarity is already violated at energies well below the Planck scale M, if m << M. We then restore unitarity to this amplitude up to M by adding non-minimal couplings that depend on the curvature and its derivatives, and modify the minimal description - including particle gravitational quadrupole moments - at scales O(1/m).Comment: 12 pages (Latex file, needs FEYNMAN macros), IASSNS-HEP-94/63, NYU-TH-94/05/01, CERN-TH.7388/9
    corecore