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We study the possibility of detecting the neutral Higgs bosons predicted in the Minimal Su-
persymmetric Standard Model (h0, H0, A0), with the reactions e+e− → bb̄h0(H0, A0), using the
helicity formalism. We analyze the region of parameter space (mA0− tan β) where h0(H0, A0) could
be detected in the limit when tan β is large. The numerical computation is done for the energy
which is expected to be available at LEP-II (

√
s = 200 GeV ) and for a possible Next Linear e+e−

Collider (
√

s = 500 GeV ).

PACS: 14.80.Cp, 12.60.Jv

I. INTRODUCTION

The Higgs sector is one of the most important areas of the Standard Model (SM) that has not been yet tested [1].
The SM contain only one neutral Higgs boson and although its detection would give more validity to the SM, there
are some theoretical problems that suggest the need for new physics. One of the more attractive extensions of the SM
is Supersymmetry (SUSY) [2], mainly because of its capacity to solve the naturalness and hierarchy problems while
maintaining the Higgs bosons elementary.

The minimal supersymmetric extension of the Standard Model (MSSM) doubles the spectrum of particles of the
SM and the new free parameters obey simple relations. The scalar sector of the MSSM [3] requires two Higgs doublets,
thus the remaining scalar spectrum contains the following physical states: two CP-even Higgs scalar (h0 and H0)
with mh0 ≤ mH0 , one CP-odd Higgs scalar (A0) and a charged Higgs pair (H±), whose detection would be a clear
signal of new physics. The Higgs sector is specified at tree-level by fixing two parameters, which can be chosen as the
mass of the pseudoscalar mA0 and the ratio of vacuum expectation values of the two doublets tanβ = v2/v1, then the
mass mh0 , mH0 and mH± and the mixing angle of the neutral Higgs sector α can be fixed. However, since radiative
corrections produce substantial effects on the predictions of the model [4], it is necessary to specify also the squark
masses, which are assumed to be degenerated. In this paper, we focus on the phenomenology of the neutral CP-even
and CP-odd scalar (h0, H0, A0).

The search for these scalars has begun at LEP, and current low energy bound on their masses gives mh0 , mA0 >
75 GeV for tan β > 1 [5].

At e+e− colliders the signals for Higgs bosons are relatively clean and the opportunities for discovery and detailed
study will be excellent. The most important processes for the production and detection of the neutral Higgs bosons, h0,
H0 and A0, are: e+e− → Z∗ → h0, H0 +Z0, e+e− → Z∗ → h0, H0 +A0, and e+e− → νν̄ + W+∗W−∗ → νν̄ +h0, H0

(the later is conventionally referred to as WW fusions); precise cross section formulae appear in Ref. [6]. There is
considerable complementarity among the first four processes, and the WW fusion processes are also complementary
to one another and to the first four. If mA0 >∼mZ0 , so that cos2(β − α) is small, then Z∗ → h0Z0, Z∗ → H0A0, and
WW → h0 are all maximal, and the other three small.

In particular, an h0 with mh0 ∼ mZ0 could be seen at LEP-II provided that
√

s >∼ 200 GeV with L ∼ 500 pb− [7]
can be achieved, and that efficient b-tagging is possible [8]. But, if the h0 were not discovered at this energy, pushing
slowly to

√
s = 240 GeV would rapidly open up the possibility for h0 detection in the regions of parameters space

corresponding to the higher values of M∼
t

and tan β. Of course, the ability of LEP-II to detect h0 is also strongly
dependent upon the actual

√
s that can be achieved and upon the unknown value of M∼

t
(and to a lesser degree on

the parameters that control squark mixing which in this paper will be neglected). Since radiative corrections make
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possible to have mh0 > mZ0 , it seems that hadron colliders will be also required to test fully the Higgs sector of the
MSSM [9].

The Z0h0 production cross section contains an overall factor sin2(β − α) which suppress it in certain parameter
regions (with mA0 < 100 GeV and tan β large); fortunately the A0h0 production cross section contains the comple-
mentary factor cos2(β − α). Hence the Z0h0 and A0h0 channels together are well suited to cover all regions in the
(mA0 − tan β) plane, provided that the c.m. energy is high enough for Z0h0 to be produced through the whole mh0

mass range, and that an adequate event rate can be achieved. These conditions are already shown to be satisfied [10]
for
√

s = 500 GeV with assumed luminosity 10 fb−1, like is expected to be the case of the Next Linear e+e− Collider
(NLC).

In previous studies, the two body processes e+e− → h0(H0) + Z0 and e+e− → h0(H0) + A0 have been evaluated
[6] extensively. However, the inclusion of three-body process e+e− → h0(H0) + bb̄ and e+e− → A0 + bb̄ at LEP-II
and NLC energies is necessary in order to know its impact on the two body mode processes and also to search for
new relations that could have a cleaner signature of the Higgs bosons production.

In the present paper we study the production of SUSY Higgs bosons at e+e− colliders. We are interested in finding
regions that could allow the detection of the SUSY Higgs bosons for the set parameter space (mA0 − tan β). We shall
discuss the neutral Higgs bosons production bb̄h0(H0, A0) in the energy range of LEP-II and NLC for large values
of the parameter tan β, where one expects to have a high production. Since the coupling h0bb̄ is proportional to
sin α/ cosβ, the cross section will receive a large enhancement factor when tanβ is large. Similar situation occurs
for H0, whose coupling with bb̄ is proportional to cosα/ cosβ. The coupling of A0 with bb̄ is directly proportional
to tan β, thus the amplitude will always grow with tanβ. We consider the complete set of Feynman diagrams at
tree-level and use the helicity formalism [11–17] for the evaluation of the amplitudes. The results obtained for the
3-body processes are compared with the dominant mode 2-body reactions for the plane (mA0 − tan β). Succinctly,
our aim in this work is to analyze how much the results of the Bjorken Mechanism (Fig. 1.4) would be enhanced by
the contribution from the diagrams depicted in Figs. 1.1, 1.2, 1.3, 1.5 and 1.6, in which the SUSY Higgs boson is
radiated by a b(b̄) quark.

Recently, it has been shown that for large values of tanβ detection of SUSY Higgs bosons is possible at FNAL
and LHC [18]. In the papers cited in Ref.[18] the authors calculated the corresponding 3-body diagrams for hadron
collisions. They pointed out the importance of a large bottom Yukawa coupling at hadron colliders and showed that
the Tevatron collider may be a good place for detecting SUSY Higgs bosons. In the case of the hadron colliders
the three body diagrams come from gluon fusion and this fact makes the contribution from these diagrams more
important, due to the gluon abundance inside the hadrons. The advantage for the case of e+e− colliders is that the
signals of the processes are cleaner.

This paper is organized as follows. We present in Sect. II the relevant details of the calculations. Sect. III contains
the results for the process e+e− → bb̄h0(H0, A0) at LEP-II and NLC. Finally, Sect. IV contains our conclusions.

II. HELICITY AMPLITUDE FOR NEUTRAL HIGGS BOSONS PRODUCTION

When the number of Feynman diagrams is increased, the calculation of the amplitude is a rather unpleasant task.
Some algebraic forms [19] can be used in it to avoid manual calculation, but sometimes the lengthy printed output
from the computer is overwhelming, and one can hardly find the required results from it. The CALKUL collaboration
[20] suggested the Helicity Amplitude Method (HAM) which can simplify the calculation remarkably and hence make
the manual calculation realistic.

In this section we discuss the evaluation of the amplitudes at tree-level, for e+e− → bb̄h0(H0, A0) using the HAM
[11–17]. This method is a powerfull technique for computing helicity amplitudes for multiparticle processes involving
massles spin-1/2 and spin-1 particles. Generalization of this method that incorporates massive spin-1/2 and spin-1
particles, are given in Ref. [17]. This algebra is easy to program and more efficient than computing the Dirac algebra.

A Higgs boson h0, H0 and A0 can be produced in scattering e+e− via the following processes:

e+e− → bb̄h0, (1)
e+e− → bb̄H0, (2)
e+e− → bb̄A0. (3)

The diagrams of Feynman, which contribute at tree-level to the different reaction mechanisms are depicted in Figs.
1-2. Using the Feynman rules given by the Minimal Supersymmetric Standard Model (MSSM), as are summarized
in Ref. [6], we can write the amplitudes for these reactions. For the evaluation of the amplitudes we have used the
spinor-helicity technique of Xu, Zhang and Chang [12] (denoted henceforth by XZC), which is a modification of the
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technique developed by the CALKUL collaboration [20]. Following XZC, we introduce a very useful notation for the
calculation of the processes (1)-(3).

A. Cases bb̄h0 and bb̄H0

Let us consider the process

e−(p1) + e+(p2) → b(k2) + b̄(k3) + h(k1), h = h0, H0 (4)

in which the helicity amplitude is denoted by M(λ(e+), λ(e−), λ(b), λ(b̄)). The Feynman diagrams for this process
are shown in Fig. 1. From this figure it follows that the amplitudes that correspond to each graph are:

M1 = −iC1PZ0b(s13)PZ0e(s)T
µ
Z0bTZ0eµ,

M2 = −iC2PZ0b(s12)PZ0e(s)T
µ
Z0bTZ0eµ,

M3 = −iC3PA0b(s23)PZ0e(s)T
µ
A0bTZ0eµ, (5)

M4 = iC4PZ0b(s23)PZ0e(s)T
µ
Z0bTZ0eµ,

M5 = −iC5Pγb(s13)Pγe(s)T
µ
γbTγeµ,

M6 = −iC6Pγb(s12)Pγe(s)T
µ
γbTγeµ,

where

C1 =
{

g3mb sin α/32MW cos2 θW cosβ, h = h0

−g3mb cosα/32MW cos2 θW cosβ, h = H0

C2 =
{

g3mb sin α/32MW cos2 θW cosβ, h = h0

−g3mb cosα/32MW cos2 θW cosβ, h = H0

C3 =
{

g3mb tan β cos(β − α)/16MW cos2 θW , h = h0

−g3mb tanβ sin(β − α)/16MW cos2 θW , h = H0

C4 =
{

g3MZ0 sin(β − α)/4 cos3 θW , h = h0

g3MZ0 cos(β − α)/4 cos3 θW , h = H0 (6)

C5 =
{

gmbe
2QeQb sin α/2MW cosβ, h = h0

−gmbe
2QeQb cosα/2MW cosβ, h = H0

C6 =
{

gmbe
2QeQb sin α/2MW cosβ, h = h0

−gmbe
2QeQb cosα/2MW cosβ, h = H0

while the propagators are

PZ0b(s13) =
1

(k1 + k3)2
,

PZ0e(s) =
1

(s−M2
Z0 − iMZ0ΓZ0)

,

PZ0b(s12) =
1

(k1 + k2)2
,

Phb(s23) =
1

[(k2 + k3)2 −M2
h − iMhΓh]

, h = h0, H0, A0

PZ0b(s23) =
1

[(k2 + k3)2 −M2
Z0 − iMZ0ΓZ0 ]

, (7)

Pγb(s13) = PZ0b(s13),

Pγe(s) =
1
s
,

Pγb(s12) = PZ0b(s12),

and the corresponding tensors
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T µ
Z0b = ū(k2)γµ(ab − bbγ5)(k/1 + k3)v(k/3),

TZ0eµ = v̄(p2)γµ(ae − beγ5)u(p1),
T µ

Z0b = ū(k2)(k/1 + k/2)γ
µ(ab − bbγ5)v(k3),

T µ
A0b = ū(k2)γ5(k2 + k3 − k1)µv(k3), (8)

T µ
Z0b = ū(k2)γµ(ab − bbγ5)vk3,

T µ
γb = ū(k2)γµ(k/1 + k/3)v(k3),

Tγbµ = v̄(p2)γµu(p1),
T µ

γb = ū(k2)(k/1 + k/2)γ
µv(k3).

In fact, we rearrange the tensors T
′
s in such a way that they become appropriate to a computer program. Then,

following the rules from helicity calculus formalism [11–17] and using identities of the type

{ūλ(p1)γµuλ(p2)}γµ = 2uλ(p2)ūλ(p1) + 2u−λ(p1)ū−λ(p2), (9)

which is in fact the so called Chisholm identity, and

p/ = uλ(p)ūλ(p) + u−λ(p)ū−λ(p), (10)

defined as a sum of the two projections uλ(p)ūλ(p) and u−λ(p)ū−λ(p).
The spinor products are given by

s(pi, pj) ≡ ū+(pi)u−(pj) = −s(pj , pi),
t(pi, pj) ≡ ū−(pi)u+(pj) = [s(pj , pi)]∗. (11)

Using Eqs. (9), (10) and (11), which are proved in Ref. [17], we can reduce many amplitudes to expressions involving
only spinor products.

Evaluating the tensor products of (5) for each combination of (λ, λ
′
) with λ, λ

′
= ±1 one obtains the following

expressions

M1(+, +) = F1f
+,+
1 s(k2, p2)t(p1, k1)s(k1, k3),

M1(+,−) = F1f
+,−
1 s(k2, p1)t(p2, k1)s(k1, k3),

M1(−, +) = F1f
−,+
1 t(k2, p1)s(p2, k1)t(k1, k3), (12)

M1(−,−) = F1f
−,−
1 t(k2, p2)s(p1, k1)t(k1, k3),

M2(+, +) = F2f
+,+
2 t(k2, k1)s(k1, p2)t(p1, k3),

M2(+,−) = F2f
+,−
2 t(k2, k1)s(k1, p1)t(p2, k3),

M2(−, +) = F2f
−,+
2 s(k2, k1)t(k1, p1)s(p2, k3), (13)

M2(−,−) = F2f
−,−
2 s(k2, k1)t(k1, p2)s(p1, k3),

M3(+, +) = F3f
+,+
3 t(k2, k3)[s(p2, k2)t(k2, p1) + s(p2, k3)t(k3, p1)− s(p2, k1)t(k1, p1)],

M3(+,−) = F3f
+,−
3 t(k2, k3)[t(p2, k2)s(k2, p1) + t(p2, k3)s(k3, p1)− t(p2, k1)s(k1, p1)],

M3(−, +) = F3f
−,+
3 s(k2, k3)[s(p2, k2)t(k2, p1) + s(p2, k3)t(k3, p1)− s(p2, k1)t(k1, p1)], (14)

M3(−,−) = F3f
−,−
3 s(k2, k3)[t(p2, k2)s(k2, p1) + t(p2, k3)s(k3, p1)− t(p2, k1)s(k1, p1)],

M4(+, +) = F4f
+,+
4 s(k2, p2)t(p1, k3),

M4(+,−) = F4f
+,−
4 s(k2, p1)t(p2, k3),

M4(−, +) = F4f
−,+
4 t(k2, p1)s(p2, k3), (15)

M4(−,−) = F4f
−,−
4 t(k2, p2)s(p1, k3),
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M5(+, +) = F5s(k2, k1)t(k1, p1)s(p2, k3),
M5(+,−) = F5s(k2, k1)t(k1, p2)s(p1, k3),
M5(−, +) = F5t(k2, k1)s(k1, p2)t(p1, k3), (16)
M5(−,−) = F5t(k2, k1)s(k1, p1)t(p2, k3),

M6(+, +) = F6s(k2, p2)t(p1, k1)s(k1, k3),
M6(+,−) = F6s(k2, p1)t(p2, k1)s(k1, k3),
M6(−, +) = F6t(k2, p1)s(p2, k1)t(k1, k3), (17)
M6(−,−) = F6t(k2, p2)s(p1, k1)t(k1, k3),

where

F1 = −2iC1PZ0b(s13)PZ0e(s),
F2 = −2iC2PZ0b(s12)PZ0e(s),
F3 = −iC3Phb(s23)PZ0e(s),
F4 = 2iC4PZ0b(s23)PZ0e(s), (18)
F5 = −2iC5Pγb(s13)Pγe(s),
F6 = −2iC6Pγb(s12)Pγe(s),

and

f+,+
1 = f+,+

2 = f+,+
4 = (ab − bb)(ae − be),

f+,−
1 = f+,−

2 = f+,−
4 = (ab − bb)(ae + be),

f−,+
1 = f−,+,

2 = f−,+
4 = (ab + bb)(ae − be),

f−,−
1 = f−,−

2 = f−,−
4 = (ab + bb)(ae + be), (19)

f+,+
3 = f−,+,

3 = (ae − be),

f+,−
3 = f−,−

3 = (ae + be).

Here, ae = −1 + 4 sin2 θW , be = 1, ab = −1 + 4
3 sin2 θW and bb = −1, according to the experimental data [22].

B. Case bb̄A0

The Feynman diagrams that contribute to the process e+e− → bb̄A0 to tree-level, are shown in Fig. 2. The
corresponding amplitudes to each graph are:

M1 = C1PZ0b(s13)PZ0e(s)T
µ
Z0bTZ0eµ,

M2 = C2PZ0b(s12)PZ0e(s)T
µ
Z0bTZ0eµ,

M3 = C3PZ0H(s23)PZ0e(s)T
µ
Z0HTZ0eµ,

M4 = C4PZ0h(s23)PZ0e(s)T
µ
Z0hTZ0eµ, (20)

M5 = C5Pγb(s13)Pγe(s)T
µ
γbTγeµ,

M6 = C6Pγb(s12)Pγe(s)T
µ
γbTγeµ,

where

C1 = g3mb tan β/32MW cos2 θW ,

C2 = C1,

C3 = −g3mb cosα sin(β − α)/16MW cosβ cos2 θW ,

C4 = −g3mb sinα cos(β − α)/16MW cosβ cos2 θW , (21)
C5 = gmbe

2QeQb tan β/2MW ,

C6 = C5,
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The propagators are given in Eq. (7), while the tensors T µ
Z0b and TZ0eµ Eq. (8), and the new ones as follows.

T µ
Z0b = ū(k2)γ5(k/1 + k/2)γ

µ(ab − bbγ5)v(k3),
T µ

Z0h = ū(k2)(k1 − k2 − k3)µv(k3). (22)

Making use of Eqs. (9)-(11), we can reduce the amplitude M to expressions that contain only spinor products.
Finally, evaluating the tensor products in Eq. (20) for each combination of λ, λ

′
= ±1 we obtain:

M1(+, +) = 2G1g
+,+
1 t(k2, k1)s(k1, p2)t(p1, k3),

M1(+,−) = 2G1g
+,−
1 t(k2, k1)s(k1, p1)t(p2, k3),

M1(−, +) = 2G1g
−,+
1 s(k2, k1)t(k1, p1)s(p2, k3), (23)

M1(−,−) = 2G1g
−,−
1 s(k2, k1)t(k1, p2)s(p1, k3),

M2(+, +) = 2G2g
+,+
2 t(k2, p1)s(p2, k1)t(k1, k3),

M2(+,−) = 2G2g
+,−
2 t(k2, p2)s(p1, k1)t(k1, k3),

M2(−, +) = 2G2g
−,+
2 s(k2, p2)t(p1, k1)s(k1, k3), (24)

M2(−,−) = 2G2g
−,−
2 s(k2, p1)t(p2, k1)s(k1, k3),

M3(+, +) = −G3g
+,+
3 s(k2, k3)[t(p2, k2)s(k2, p1) + t(p2, k3)s(k3, p1)− t(p2, k1)s(k1, p1)],

M3(+,−) = −G3g
+,−
3 s(k2, k3)[s(p2, k2)t(k2, p1) + s(p2, k3)t(k3, p1)− s(p2, k1)t(k1, p1)],

M3(−, +) = −G3g
−,+
3 t(k2, k3)[t(p2, k2)s(k2, p1) + t(p2, k3)s(k3, p1)− t(p2, k1)s(k1, p1)], (25)

M3(−,−) = −G3g
−,−
3 t(k2, k3)[s(p2, k2)t(k2, p1) + s(p2, k3)t(k3, p1)− s(p2, k1)t(k1, p1)],

M4(+, +) = −G4g
+,+
4 t(k2, k3)[s(p2, k2)t(k2, p1) + s(p2, k3)t(k3, p1)− s(p2, k1)t(k1, p1)],

M4(+,−) = −G4g
+,−
4 t(k2, k3)[t(p2, k2)s(k2, p1) + t(p2, k3)s(k3, p1)− t(p2, k1)s(k1, p1)],

M4(−, +) = −G4g
−,+
4 s(k2, k3)[s(p2, k2)t(k2, p1) + s(p2, k3)t(k3, p1)− s(p2, k1)t(k1, p1)], (26)

M4(−,−) = −G4g
−,−
4 s(k2, k3)[t(p2, k2)s(k2, p1) + t(p2, k3)s(k3, p1)− t(p2, k1)s(k1, p1)],

M5(+, +) = −2G5t(k2, p1)s(p2, k1)t(k1, k3),
M5(+,−) = −2G5t(k2, p2)s(p1, k1)t(k1, k3),
M5(−, +) = 2G5s(k2, p2)t(p1, k1)s(k1, k3), (27)
M5(−,−) = 2G5s(k2, p1)t(p2, k1)s(k1, k3),

M6(+, +) = 2G6t(k2, k1)s(k1, p2)t(p1, k3),
M6(+,−) = 2G6t(k2, k1)s(k1, p1)t(p2, k3),
M6(−, +) = −2G6s(k2, k1)t(k1, p1)s(p2, k3), (28)
M6(−,−) = −2G6s(k2, k1)t(k1, p2)s(p1, k3),

where

G1 = C1PZ0b(s13)PZ0e(s),
G2 = C2PZ0b(s12)PZ0e(s),
G3 = C3PZ0H(s23)PZ0e(s),
G4 = C4PZ0h(s23)PZ0e(s), (29)
G5 = C5Pγb(s13)Pγe(s),
G6 = C6Pγb(s12)Pγe(s),

and
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g+,+
1 = g+,+

2 = f+,+
1 , g+,+

3 = g+,+
4 = f+,+,

3 ,

g+,−
1 = g+,−

2 = f+,−
1 , g+,−

3 = g+,−
4 = f+,−

3 ,

g−,+
1 = g−,+

2 = f−,+
1 , g−,+

3 = g−,+
4 = f−,+

3 , (30)

g−,−
1 = g−,−

2 = f−,−
1 , g−,−

3 = g−,−
4 = f−,−

3 .

The expressions for the f+,+
1 , f+,−

1 , f−,+
1 , f−,−

1 , f+,+
3 , f+,−

3 , f−,+
3 and f−,−

3 are given in Eq. (19).
After the evaluation of the amplitudes of the corresponding diagrams, we obtain the cross sections of the analyzed

processes for each point of the phase space using Eqs. (12)-(17) and (23)-(28) by a computer program, which makes
use of the subroutine RAMBO (Random Momenta Beautifully Organized). The advantages of this procedure in
comparison to the traditional ”trace technique” are discussed in Ref. [11–17].

We use the Breit-Wigner propagators for the Z0, h0, H0 and A0 bosons. The mass of the bottom (mb ≈ 4.5 GeV ),
the mass (MZ0 = 91.2 GeV ) and width (ΓZ0 = 2.4974 GeV ) of Z0 have been taken as inputs; the widths of h0, H0

and A0 are calculated from the formulae given in Ref. [6]. In the next sections we present the numerical computation
of the processes e+e− → bb̄h, h = h0, H0, A0.

III. DETECTION OF NEUTRAL HIGGS BOSONS AT LEP-II AND NLC ENERGIES

In an earlier paper [21] has been explored the possibility of finding one or more of the neutral Higgs bosons predicted
by the MSSM in gg → bb̄h (h = h0, H0, A0) followed by h → bb̄, profiting from the very high b-tagging efficiencies.
In other works [18], it has been studied the discovery reach of the Tevatron and the LHC for detecting a Higgs boson
(h) via the processes pp̄/pp → bb̄h(→ bb̄) + X and it has been shown the possibility of detecting SUSY Higgs bosons
at FNAL and LHC if tanβ is large.

In this paper, we study the detection of neutral MSSM Higgs bosons at e+e− colliders, including 3-body mode
diagrams (Figs. 1.1, 1.2, 1.3, 1.5 and 1.6; Figs. 2.1, 2.2, 2.3, 2.5 and 2.6) besides the dominant mode diagram (Fig.
1.4; Fig. 2.4) assuming an integrated luminosity of L = 500 pb−1 and L = 10 fb−1 at

√
s = 200 GeV and 500 GeV

for LEP-II and NLC, respectively. We consider the complete set of Feynman diagrams (Fig. 1-2) at tree-level and
utilize the helicity formalism for the evaluation of their amplitudes. In the next subsections, we present our results
for the case of the different Higgs bosons.

A. Detection of h0

In order to illustrate our results on the detection of the h0 Higgs boson, we present graphs in the parameters space
region (mA0 − tan β), assuming mt = 175 GeV , M∼

t
= 500 GeV and tan β > 1 for LEP-II and NLC. Our results are

displayed in Fig. 3, for e+e− → (A0, Z0) + h0 dominant mode and for the processes at 3-body e+e− → bb̄h0.
The total cross section for each contour is 0.01 pb, 0.02 pb and 0.05 pb, which gives 5 events, 10 events and 25

events, respectively. We can see from this figure, that the effect of the reaction bb̄h0 is lightly more important that
(A0, Z0) + h0, for most of the (mA0 − tan β) parameter space regions. Nevertheless, there are substantial portions of
parameters space in which the discovery of the h0 is not possible using either (A0, Z0) + h0 or bb̄h0.

For the case of NLC, the results on the detection of the h0 are shown in Fig. 4. It is clear from this figure that the
contribution of the process e+e− → bb̄h0 becomes dominant, namely e+e− → (A0, Z0) + h0 is small in all parameter
space. However, they could provide important information on the Higgs bosons detection. For instance, we give the
contours for the total cross section to say 0.01 pb and 0.03 pb for both processes. These cross sections give 100 events
and 300 events in total to each process, then it will be detectable the h0 at NLC energies.

B. Detection of H0

The detection of the heavy Higgs bosons H0 is not possible at LEP-II. Nevertheless, the possibility for a future
e+e− collider with center of mass energy of order 500 GeV is surveyed. Consequently, detection of the H0 and A0

will be only possible in such a scenario if
√

s is significantly larger than mA0 + mH0 , i.e. >∼2mA0 for large mA0 where
mH0 ≈ mA0 . To illustrate more precisely our results, we give the contours for the total cross section for both processes
e+e− → (A0, Z0) + H0, e+e− → bb̄H0 in Fig. 5 for an NLC with

√
s = 500 GeV and L = 10 fb−1 in the case where

mt = 175 GeV and M∼
t

= 500 GeV (squark mixing is neglected). The contours for this cross section are 0.01 pb,
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0.001 pb and 0.0001 pb for both reactions (A0, Z0) + H0 and bb̄H0. While that the number of events corresponding
to each contour are 100, 10 and 1, respectively.

Our estimate is that if more than 100 total events are obtained for a given process (A0, Z0) + H0 or bb̄H0 then
the Higgs boson H0 can be detectable. Contours for 10 events are also shown, but detection of any of the two cases
with so few events would require very high experimental and analysis efficiencies.

The effect of incorporate bb̄H0 in the detection of the Higgs boson H0 is more important than the case of 2-body
mode (A0, Z0)+H0, because bb̄H0 cover a major region in the parameters space (mA0 − tan β). The most important
conclusion from this figure is that detection of all of the neutral Higgs bosons will be possible at

√
s = 500 GeV .

C. Detection of A0

For the pseudoscalar A0, it is interesting to consider the production mode into bb̄A0, since it can have large cross
section due to that the coupling of A0 with bb̄ is directly proportional to tan β, thus will always grow with it. In Fig.
6, we present the contours of the cross sections for the process of our interest bb̄A0, at LEP-II energies.

We display the contour lines for σ = 0.01, 0.02, showing also the regions where the A0 can be detected. These cross
sections give a contour of production of 5 and 10 events. It is clear from this figure that to detecting the Higgs boson
A0 are necessary very high experimental and analysis efficiencies.

On the other hand, if we focus the detection of the A0 at Next Linear e+e− Collider with
√

s = 500 GeV and
L = 10 fb−1, the panorama for its detection is more extensive. The Fig. 7, show the contours lines in the plane
(mA0 − tan β), to the cross section of bb̄A0. The contours for this cross section correspond to 100, 30 and 10 events.
It is estimated that if more than 100 total events are obtained for bb̄A0, then it is possible to detect the A0.

IV. CONCLUSIONS

In this paper, we have calculated the production of a neutral Higgs bosons in association with b-quarks via the
processes e+e− → bb̄h, h = h0, H0, A0 and using the helicity formalism. We find that this processes could help to
detect a possible neutral Higgs boson at LEP-II and NLC energies when tan β is large.

The detection of h0 through of the reaction e+e− → bb̄h0, compete favorable with the mode dominant e+e− →
(A0, Z0) + h0. The process at 3-body bb̄h0 cover lightly a major portion of the parameter space (mA0 − tan β) as is
shown in Fig. 3 and the corresponding cross section for each contour is of σ = 0.01 pb, 0.02 pb, 0.05 pb for LEP-II;
while for NLC we have that σ = 0.01 pb, 0.03 pb and the corresponding contours are show in Fig. 4. However, there
is a portion of the plane (mA0 − tan β) where h0 is not detectable with the mechanism (A0, Z0) + h0 or bb̄h0.

The heavy Higgs boson H0 is not detectable at LEP-II energies. Nevertheless, it could be detected at NLC via
the (A0, Z0) + H0 or bb̄h0 reaction, with H0 being produced in association with b-quarks. The detection of the H0

will only be possible in such scenarios if
√

s is significantly larger that mA0 + mH0 , i .e. >∼2mA0 for large mA0 where
mH0 ≈ mA0 . In Fig. 5, we give the contours for the cross sections for both cases (A0, Z0) + H0 and bb̄H0. We find
that for mA0 and tan β large the reaction e+e− → bb̄H0 is more important that e+e− → (A0, Z0) + H0 and cover a
major region in the parameter space (mA0 − tanβ) where this mode is kinematically allowed.

It is interesting to notice that the associate production of A0 with bb̄ is enhanced for larger values of tan β, which
could be used to detect neutral Higgs bosons, provided that it will be possible also to tag the signals using the b-quarks
produced in the reaction.

In the Figs. 6-7, we show the contours for the total cross section of the process bb̄A0 for both LEP-II and NLC
energies. We can conclude that there is a region where the Higgs boson A0 could be detected at the next high energy
machines (NLC).

In summary, we conclude that the possibilities of detecting or excluding the neutral Higgs bosons of the Minimal
Supersymmetric Standard Model (h0, H0, A0) in the processes e+e− → bb̄h, h = h0, H0, A0 are important and in
some cases are compared favorable with the mode dominant e+e− → (A0, Z0) + h, h = h0, H0, A0 in the region of
parameters space (mA0 − tanβ) with tan β large. The detection of the Higgs boson will require the combined use of
the future high energy machine like LEP-II and the Next Linear e+e− Collider.
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FIGURE CAPTIONS

Fig. 1 Feynman Diagrams at tree-level for e+e− → bb̄h0. For e+e− → bb̄H0 one has to make only the change
sin α/ cosβ → cosα/ cosβ.

Fig. 2 Feynman Diagrams at tree-level for e+e− → bb̄A0.

Fig. 3 Total cross sections contours in (mA0 − tan β) parameter space for e+e− → (A0, Z0) + h0 and e+e− → bb̄h0

at LEP-II with
√

s = 200 GeV and an integrated luminosity of L = 500 pb−1. We have taken mt = 175 GeV and
M∼

t
= 500 GeV and neglected squark mixing.

Fig. 4 Total cross sections contours for an NLC with
√

s = 500 GeV and L = 10 fb−1. We have taken mt = 175
GeV , M∼

t
= 500 GeV and neglected squark mixing. We display contours for e+e− → (A0, Z0)+h0 and e+e− → bb̄h0,

in the parameters space (mA0 − tanβ).

Fig. 5 Same as in Fig. 4, but for e+e− → (A0, Z0) + H0 and e+e− → bb̄H0.

Fig. 6 Same as in Fig. 3, but for e+e− → bb̄A0.

Fig. 7 Same as in Fig. 4, but for e+e− → bb̄A0.
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