558 research outputs found

    Twisted mass chiral perturbation theory for 2+1+1 quark flavours

    Full text link
    We present results for the masses of pseudoscalar mesons in twisted mass lattice QCD with a degenerate doublet of u and d quarks and a non-degenerate doublet of s and c quarks in the framework of next-to-leading order chiral perturbation theory, including lattice effects up to O(a^2). The masses depend on the two twist angles for the light and heavy sectors. For maximal twist in both sectors, O(a)-improvement is explicitly exhibited. The mixing of flavour-neutral mesons is also discussed, and results in the literature for the case of degenerate s and c quarks are corrected.Comment: LaTeX2e, 12 pages, corrected typo

    The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures

    Full text link
    Microcanonical thermodynamics allows the application of statistical mechanics both to finite and even small systems and also to the largest, self-gravitating ones. However, one must reconsider the fundamental principles of statistical mechanics especially its key quantity, entropy. Whereas in conventional thermostatistics, the homogeneity and extensivity of the system and the concavity of its entropy are central conditions, these fail for the systems considered here. For example, at phase separation, the entropy, S(E), is necessarily convex to make exp[S(E)-E/T] bimodal in E. Particularly, as inhomogeneities and surface effects cannot be scaled away, one must be careful with the standard arguments of splitting a system into two subsystems, or bringing two systems into thermal contact with energy or particle exchange. Not only the volume part of the entropy must be considered. As will be shown here, when removing constraints in regions of a negative heat capacity, the system may even relax under a flow of heat (energy) against a temperature slope. Thus the Clausius formulation of the second law: ``Heat always flows from hot to cold'', can be violated. Temperature is not a necessary or fundamental control parameter of thermostatistics. However, the second law is still satisfied and the total Boltzmann entropy increases. In the final sections of this paper, the general microscopic mechanism leading to condensation and to the convexity of the microcanonical entropy at phase separation is sketched. Also the microscopic conditions for the existence (or non-existence) of a critical end-point of the phase-separation are discussed. This is explained for the liquid-gas and the solid-liquid transition.Comment: 23 pages, 2 figures, Accepted for publication in the Journal of Chemical Physic

    Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that

    Get PDF
    We aim to offer a kind of unifying view on two popular topics in the studies of nonperturbative aspects of Yang-Mills theories in the Landau gauge: the so-called Gribov-Zwanziger approach and the Kugo-Ojima confinement criterion. Borrowing results from statistical thermodynamics, we show that imposing the Kugo-Ojima confinement criterion as a boundary condition leads to a modified yet renormalizable partition function. We verify that the resulting partition function is equivalent with the one obtained by Gribov and Zwanziger, which restricts the domain of integration in the path integral within the first Gribov horizon. The construction of an action implementing a boundary condition allows one to discuss the symmetries of the system in the presence of the boundary. In particular, the conventional BRST symmetry is softly broken.Comment: 5 pages. v2 matches version to appear in PhysRevD (RC

    On a new definition of quantum entropy

    Full text link
    It is proved here that, as a consequence of the unitary quantum evolution, the expectation value of a properly defined quantum entropy operator (as opposed to the non-evolving von Neumann entropy) can only increase during non adiabatic transformations and remains constant during adiabatic ones. Thus Clausius formulation of the second law is established as a theorem in quantum mechanics, in a way that is equivalent to the previously established formulation in terms of minimal work principle [A. E. Allahverdyan and T. M. Nieuwenhuizen, Phys. Rev. E 71, 046107 (2005)]. The corresponding Quantum Mechanical Principle of Entropy Increase is then illustrated with an exactly solvable example, namely the driven harmonic oscillator. Attention is paid to both microcanonical and canonical initial condition. The results are compared to their classical counterparts.Comment: 4 pages, 3 figure

    Fluctuations in the presence of fields -Phenomenological Gaussian approximation and a new class of thermodynamic inequalities-

    Full text link
    The work approaches the study of the fluctuations for the thermodynamic systems in the presence of the fields. The approach is of phenomenological nature and developed in a Gaussian approximation. The study is exemplified on the cases of a magnetizable continuum in a magnetoquasistatic field, as well as for the so called discrete systems. In the last case one finds that the fluctuations estimators depends both on the intrinsic properties of the system and on the characteristics of the environment. Following some earlier ideas of one of the authors we present a new class of thermodynamic inequalities for the systems investigated in this paper. In the case of two variables the mentioned inequalities are nothing but non-quantum analogues of the well known quantum Heisenberg (''uncertainty'') relations. Also the obtained fluctuations estimators support the idea that the Boltzmann's constant k has the signification of a generic indicator of stochasticity for thermodynamic systems. Pacs number(s): 05.20.-y, 05.40.-a, 05.70.-a, 41.20.GzComment: preprint, 24 page

    Derivation of Boltzmann Principle

    Full text link
    We present a derivation of Boltzmann principle SB=kBlnWS_{B}=k_{B}\ln \mathcal{W} based on classical mechanical models of thermodynamics. The argument is based on the heat theorem and can be traced back to the second half of the nineteenth century with the works of Helmholtz and Boltzmann. Despite its simplicity, this argument has remained almost unknown. We present it in a modern, self-contained and accessible form. The approach constitutes an important link between classical mechanics and statistical mechanics

    Mass Spectrum and Bounds on the Couplings in Yukawa Models With Mirror-Fermions

    Full text link
    The SU(2)LSU(2)R\rm SU(2)_L\otimes SU(2)_R symmetric Yukawa model with mirror-fermions in the limit where the mirror-fermion is decoupled is studied both analytically and numerically. The bare scalar self-coupling λ\lambda is fixed at zero and infinity. The phase structure is explored and the relevant phase transition is found to be consistent with a second order one. The fermionic mass spectrum close to that transition is discussed and a first non-perturbative estimate of the influence of fermions on the upper and lower bounds on the renormalized scalar self-coupling is given. Numerical results are confronted with perturbative predictions.Comment: 7 (Latex) page

    Interaction effects in the spectrum of the three-dimensional Ising model

    Full text link
    The two-point correlation functions of statistical models show in general both poles and cuts in momentum space. The former correspond to the spectrum of massive excitations of the model, while the latter originate from interaction effects, namely creation and annihilation of virtual pairs of excitations. We discuss the effect of such interactions on the long distance behavior of correlation functions in configuration space, focusing on certain time-slice operators which are commonly used to extract the spectrum. For the 3D Ising model in the scaling region of the broken-symmetry phase, a one-loop calculation shows that the interaction effects on time-slice correlations is non negligible for distances up to a few times the correlation length, and should therefore be taken into account when analysing Monte Carlo data.Comment: 10 pages, LaTeX file + 1 ps figure, uses axodraw.st

    Bubble formation in ϕ6\phi^6 potential

    Full text link
    Scalar field theory with an asymmetric potential is studied at zero temperature and high-temperature for ϕ6\phi^6 potential. The equations of motion are solved numerically to obtain O(4) spherical symmetric and O(3) cylindrical symmetric bounce solutions. These solutions control the rates for tunneling from the false vacuum to the true vacuum by bubble formation. The range of validity of the thin-wall approximation (TWA) is investigated. An analytical solution for the bounce is presented, which reproduces the action in the thin-wall as well as the thick-wall limits.Comment: 22 pag
    corecore