78 research outputs found

    Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals

    Get PDF
    Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV-vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5-15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the pi-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1-2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account

    Citral-to-Menthol Transformations in a Continuous Reactor over Ni/Mesoporous Aluminosilicate Extrudates Containing a Sepiolite Clay Binder

    Get PDF
    One-pot continuous synthesis of menthols from citral was performed over 5 wt % Ni supported on a mesoporous aluminosilicate catalyst with sepiolite as a binder at 70 degrees C with a selectivity of 75% to menthols. Catalyst deactivation with time-onstream resulted in a decrease of the conversion and selectivity to menthols at the expense of higher selectivity to isopulegols. Stereoselectivity to isopulegols and menthols only slightly changed with conversion and TOS. A kinetic model capable of describing experimental data for transformations of citral to menthol in a continuous mode was developed. It was based on a detailed reaction network and also comprised deactivation on both metal and acid sites. Numerical data fitting confirmed a good correspondence between the experimental data and calculations

    Umbilical cord blood DNA methylation in children who later develop type 1 diabetes

    Get PDF
    Aims/hypothesis: Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in whole blood collected from young children. Our aim was to determine whether perinatal DNA methylation is associated with later progression to type 1 diabetes.Methods: Reduced representation bisulphite sequencing (RRBS) analysis was performed on umbilical cord blood samples collected within the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study. Children later diagnosed with type 1 diabetes and/or who tested positive for multiple islet autoantibodies (n = 43) were compared with control individuals (n = 79) who remained autoantibody-negative throughout the DIPP follow-up until 15 years of age. Potential confounding factors related to the pregnancy and the mother were included in the analysis.Results: No differences in the umbilical cord blood methylation patterns were observed between the cases and controls at a false discovery rate Conclusions/interpretation: Based on our results, differences between children who progress to type 1 diabetes and those who remain healthy throughout childhood are not yet present in the perinatal DNA methylome. However, we cannot exclude the possibility that such differences would be found in a larger dataset.</p
    corecore