2,277 research outputs found

    On continuum modeling of sputter erosion under normal incidence: interplay between nonlocality and nonlinearity

    Full text link
    Under specific experimental circumstances, sputter erosion on semiconductor materials exhibits highly ordered hexagonal dot-like nanostructures. In a recent attempt to theoretically understand this pattern forming process, Facsko et al. [Phys. Rev. B 69, 153412 (2004)] suggested a nonlocal, damped Kuramoto-Sivashinsky equation as a potential candidate for an adequate continuum model of this self-organizing process. In this study we theoretically investigate this proposal by (i) formally deriving such a nonlocal equation as minimal model from balance considerations, (ii) showing that it can be exactly mapped to a local, damped Kuramoto-Sivashinsky equation, and (iii) inspecting the consequences of the resulting non-stationary erosion dynamics.Comment: 7 pages, 2 Postscript figures, accepted by Phys. Rev. B corrected typos, few minor change

    Characterization of Infrared Dark Clouds -- NH3_3 Observations of an Absorption-contrast Selected IRDC Sample

    Full text link
    Despite increasing research in massive star formation, little is known about its earliest stages. Infrared Dark Clouds (IRDCs) are cold, dense and massive enough to harbour the sites of future high-mass star formation. But up to now, mainly small samples have been observed and analysed. To understand the physical conditions during the early stages of high-mass star formation, it is necessary to learn more about the physical conditions and stability in relatively unevolved IRDCs. Thus, for characterising IRDCs studies of large samples are needed. We investigate a complete sample of 218 northern hemisphere high-contrast IRDCs using the ammonia (1,1)- and (2,2)-inversion transitions. We detected ammonia (1,1)-inversion transition lines in 109 of our IRDC candidates. Using the data we were able to study the physical conditions within the star-forming regions statistically. We compared them with the conditions in more evolved regions which have been observed in the same fashion as our sample sources. Our results show that IRDCs have, on average, rotation temperatures of 15 K, are turbulent (with line width FWHMs around 2 km s1^{-1}), have ammonia column densities on the order of 101410^{14} cm2^{-2} and molecular hydrogen column densities on the order of 102210^{22} cm2^{-2}. Their virial masses are between 100 and a few 1000 M_\odot. The comparison of bulk kinetic and potential energies indicate that the sources are close to virial equilibrium. IRDCs are on average cooler and less turbulent than a comparison sample of high-mass protostellar objects, and have lower ammonia column densities. Virial parameters indicate that the majority of IRDCs are currently stable, but are expected to collapse in the future.Comment: 21 pages, 11 figures, 7 tables. Paper accepted for publication in Astronomy & Astrophysic

    The Herschel/PACS view of disks around low-mass stars in Chamaleon-I

    Full text link
    Circumstellar disks are expected to be the birthplaces of planets. The potential for forming one or more planets of various masses is essentially driven by the initial mass of the disks. We present and analyze Herschel/PACS observations of disk-bearing M-type stars that belong to the young ~2 Myr old Chamaleon-I star forming region. We used the radiative transfer code RADMC to successfully model the SED of 17 M-type stars detected at PACS wavelengths. We first discuss the relatively low detection rates of M5 and later spectral type stars with respect to the PACS sensitivity, and argue their disks masses, or flaring indices, are likely to be low. For M0 to M3 stars, we find a relatively broad range of disk masses, scale heights, and flaring indices. Via a parametrization of dust stratification, we can reproduce the peak fluxes of the 10 μ\mum emission feature observed with Spitzer/IRS, and find that disks around M-type stars may display signs of dust sedimentation. The Herschel/PACS observations of low-mass stars in Cha-I provide new constraints on their disk properties, overall suggesting that disk parameters for early M-type stars are comparable to those for more massive stars (e.g., comparable scale height and flaring angles). However, regions of the disks emitting at about 100 μ\mum may still be in the optically thick regime, preventing direct determination of disk masses. Thus the modeled disk masses should be considered as lower limits. Still, we are able to extend the wavelength coverage of SED models and start characterizing effects such as dust sedimentation, an effort leading the way towards ALMA observations of these low-mass stars

    Infrared variability, maser activity, and accretion of massive young stellar objects

    Get PDF
    Methanol and water masers indicate young stellar objects. They often exhibit flares, and a fraction shows periodic activity. Several mechanisms might explain this behavior but the lack of concurrent infrared (IR) data complicates to identify the cause. Recently, 6.7 GHz methanol maser flares were observed, triggered by accretion bursts of high-mass YSOs which confirmed the IR-pumping of these masers. This suggests that regular IR changes might lead to maser periodicity. Hence, we scrutinized space-based IR imaging of YSOs associated with periodic methanol masers. We succeeded to extract the IR light curve from NEOWISE data for the intermediate mass YSO G107.298+5.639. Thus, for the first time a relationship between the maser and IR variability could be established. While the IR light curve shows the same period of ~34.6 days as the masers, its shape is distinct from that of the maser flares. Possible reasons for the IR periodicity are discussed.Comment: 4 pages, 3 figures, to be published in: Proceedings IAU Symposium 336 "Astrophysical Masers: Unlocking the Mysteries of the Universe", Editors: A. Tarchi, M.J. Reid & P. Castangia, updated version with hyperlinks adde

    Long-term Variability of H2_2CO Masers in Star-forming Regions

    Get PDF
    We present results of a multi-epoch monitoring program on variability of 6\,cm formaldehyde (H2_2CO) masers in the massive star forming region NGC\,7538\,IRS\,1 from 2008 to 2015 conducted with the GBT, WSRT, and VLA. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC\,7538\,IRS\,1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2\,GHz methanol and 22.2\,GHz water masers toward NGC\,7538\,IRS\,1. The brightest maser components of CH3_3OH and H2_2O species show a decrease in flux density as a function of time. The brightest H2_2CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H2_2O and 12.2\,GHz CH3_3OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97\,GHz CH3_3OH transitions in NGC\,7538\,IRS\,1 are also reported. In addition, we observed five other 6\,cm formaldehyde maser regions. We found no evidence of significant variability of the 6\,cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96-0.02. All six sources were also observed in the H213_2^{13}CO isotopologue transition of the 6\,cm H2_2CO line; H213_2^{13}CO absorption was detected in five of the sources. Estimated column density ratios [H212_2^{12}CO]/[H213_2^{13}CO] are reported.Comment: 29 pages, 9 figure

    An H2CO 6cm Maser Pinpointing a Possible Circumstellar Torus in IRAS18566+0408

    Get PDF
    We report observations of 6cm, 3.6cm, 1.3cm, and 7mm radio continuum, conducted with the Very Large Array towards IRAS18566+0408, one of the few sources known to harbor H2CO 6cm maser emission. Our observations reveal that the emission is dominated by an ionized jet at cm wavelengths. Spitzer/IRAC images from GLIMPSE support this interpretation, given the presence of 4.5um excess emission at approximately the same orientation as the cm continuum. The 7mm emission is dominated by thermal dust from a flattened structure almost perpendicular to the ionized jet, thus, the 7mm emission appears to trace a torus associated with a young massive stellar object. The H2CO 6cm maser is coincident with the center of the torus-like structure. Our observations rule out radiative pumping via radio continuum as the excitation mechanism for the H2CO 6cm maser in IRAS18566+0408.Comment: 20 pages, 4 figures, ApJ (in press

    Chemical evolution in the early phases of massive star formation. I

    Full text link
    Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. Chemistry is employed as a unique tool 1) to investigate the underlying physical processes and 2) to characterize the evolution of the chemical composition. We observed a sample of 59 high-mass star-forming regions at different evolutionary stages varying from the early starless phase of infrared dark clouds to high-mass protostellar objects to hot molecular cores and, finally, ultra-compact HII regions at 1mm and 3mm with the IRAM 30m telescope. We determined their large-scale chemical abundances and found that the chemical composition evolves along with the evolutionary stages. On average, the molecular abundances increase with time. We modeled the chemical evolution, using a 1D physical model where density and temperature vary from stage to stage coupled with an advanced gas-grain chemical model and derived the best-fit chi^2 values of all relevant parameters. A satisfying overall agreement between observed and modeled column densities for most of the molecules was obtained. With the best-fit model we also derived a chemical age for each stage, which gives the timescales for the transformation between two consecutive stages. The best-fit chemical ages are ~10,000 years for the IRDC stage, ~60,000 years for the HMPO stage, ~40,000 years for the HMC stage, and ~10,000 years for the UCHII stage. The total chemical timescale for the entire evolutionary sequence of the high-mass star formation process is on the order of 10^5 years, which is consistent with theoretical estimates. Furthermore, based on the approach of a multiple-line survey of unresolved data, we were able to constrain an intuitive and reasonable physical and chemical model. The results of this study can be used as chemical templates for the different evolutionary stages in high-mass star formation.Comment: 31 pages, 11 figures, 21 tables, accepted by A&A; typos adde

    The VLTI/MIDI survey of massive young stellar objects - Sounding the inner regions around intermediate- and high-mass young stars using mid-infrared interferometry

    Get PDF
    We aim to characterize the distribution and composition of circumstellar material around young massive stars, and to investigate exactly which physical structures in these objects are probed by long-baseline mid-infrared interferometric observations. We used the two-telescope interferometric instrument MIDI of the Very Large Telescope Interferometer of the European Southern Observatory to observe a sample of 24 intermediate- and high-mass young stellar objects in the N band (8-13 micron). We had successful fringe detections for 20 objects, and present spectrally-resolved correlated fluxes and visibility levels for projected baselines of up to 128 m. We fit the visibilities with geometric models to derive the sizes of the emitting regions, as well as the orientation and elongation of the circumstellar material. Fourteen objects in the sample show the 10 micron silicate feature in absorption in the total and correlated flux spectra. For 13 of these objects, we were able to fit the correlated flux spectra with a simple absorption model, allowing us to constrain the composition and absorptive properties of the circumstellar material. Nearly all of the massive young stellar objects observed show significant deviations from spherical symmetry at mid-infrared wavelengths. In general, the mid-infrared emission can trace both disks and outflows, and in many cases it may be difficult to disentangle these components on the basis of interferometric data alone, because of the sparse spatial frequency coverage normally provided by current long-baseline interferometers. For the majority of the objects in this sample, the absorption occurs on spatial scales larger than those probed by MIDI. Finally, the physical extent of the mid-infrared emission around these sources is correlated with the total luminosity, albeit with significant scatter.Comment: 36 pages, 22 figures. Accepted to Astronomy and Astrophysic
    corecore