2,772 research outputs found

    High-Resolution Simulations of Cosmic Microwave Background non-Gaussian Maps in Spherical Coordinates

    Full text link
    We describe a new numerical algorithm to obtain high-resolution simulated maps of the Cosmic Microwave Background (CMB), for a broad class of non-Gaussian models. The kind of non-Gaussianity we account for is based on the simple idea that the primordial gravitational potential is obtained by a non-linear but local mapping from an underlying Gaussian random field, as resulting from a variety of inflationary models. Our technique, which is based on a direct realization of the potential in spherical coordinates and fully accounts for the radiation transfer function, allows to simulate non-Gaussian CMB maps down to the Planck resolution (max3,000\ell_{\rm max} \sim 3,000), with reasonable memory storage and computational time.Comment: 9 pages, 5 figures. Submitted to ApJ. A version with higher quality figures is available at http://www.pd.infn.it/~liguori/content.htm

    Galaxy-CMB Cross-Correlation as a Probe of Alternative Models of Gravity

    Full text link
    Bekenstein's alternative to general relativity, TeVeS, reduces to Modified Newtonian Dynamics (MOND) in the galactic limit. On cosmological scales, the (potential well overdensity) relationship is quite different than in standard general relativity. Here we investigate the possibility of cross-correlating galaxies with the cosmic microwave background (CMB) to probe this relationship. At redshifts of order 2, the sign of the CMB-galaxy correlation differs in TeVeS from that in general relativity. We show that this effect is detectable and hence can serve as a powerful discriminator of these two models of gravity.Comment: 10 pages, 6 figures, revised version re-submitted to Phys. Rev.

    A quasi-static nonlinear analysis for assessing the fire resistance of 3d frames exploiting time-dependent yield surface

    Get PDF
    In this work an automatic procedure for evaluating the axial force-biaxial bending yield surface of reinforced concrete sections in fire is proposed. It provides an accurate time-dependent expression of the yield condition by a section analysis carried out once and for all, accounting for the strength reduction of the materials, which is a function of the fire duration. The equilibrium state of 3D frames with such yield conditions, once discretized using beam finite elements, is formulated as a nonlinear vectorial equation defining a curve in the hyperspace of the discrete variables and the fire duration. A generalized path-following strategy is proposed for tracing this curve and evaluating, if it exists, the limit fire duration, that is the time of exposure which leads to structural collapse. Compared to the previous proposals on the topic, which are limited to local sectional checks, this work is the first to present a global analysis for assessing the fire resistance of 3D frames, providing a time history of the fire event and taking account of the stress redistribution. Numerical examples are given to illustrate and validate the proposal

    Vascular flora of Monte Sparviere (southern Italy, Pollino Massif)

    Get PDF
    Vascular Flora of Monte Sparviere (Southern Italy, Pollino Massif). A floristic survey of Monte Sparviere was carried out from 2012 to 2015, allowing us to record 377 specific and subspecific taxa, belonging to 229 genera and 64 families. The most represented families are Asteraceae (55 taxa), Poaceae (30), Fabaceae (28), Rosaceae (23) and Lamiaceae (19). Italian endemic species reach the 8.5% and no exotic species are recorded except three conifers used for reforestation. Biological spectrum shows a dominance of Hemicryptophytes, with a moderate percentage of Therophytes. The chorological analysis shows a dominance of species belonging to the Eurosibiric region, albeit Mediterranean region is also well represented. The ecological spectra are in agreement with climatic and geo-pedologic features, with variations mainly related to woody coverage and altitude. Finally, Potentilla pedata Willd. ex Hornem was confirmed for the flora of Basilicata; Dianthus sternbergii Capelli was excluded from the flora of Basilicata and Calabria whereas Dianthus hyssopifolius L. resulted new for both regions

    Observational constraints on patch inflation in noncommutative spacetime

    Full text link
    We study constraints on a number of patch inflationary models in noncommutative spacetime using a compilation of recent high-precision observational data. In particular, the four-dimensional General Relativistic (GR) case, the Randall-Sundrum (RS) and Gauss-Bonnet (GB) braneworld scenarios are investigated by extending previous commutative analyses to the infrared limit of a maximally symmetric realization of the stringy uncertainty principle. The effect of spacetime noncommutativity modifies the standard consistency relation between the tensor spectral index and the tensor-to-scalar ratio. We perform likelihood analyses in terms of inflationary observables using new consistency relations and confront them with large-field inflationary models with potential V \propto \vp^p in two classes of noncommutative scenarios. We find a number of interesting results: (i) the quartic potential (p=4) is rescued from marginal rejection in the class 2 GR case, and (ii) steep inflation driven by an exponential potential (p \to \infty) is allowed in the class 1 RS case. Spacetime noncommutativity can lead to blue-tilted scalar and tensor spectra even for monomial potentials, thus opening up a possibility to explain the loss of power observed in the cosmic microwave background anisotropies. We also explore patch inflation with a Dirac-Born-Infeld tachyon field and explicitly show that the associated likelihood analysis is equivalent to the one in the ordinary scalar field case by using horizon-flow parameters. It turns out that tachyon inflation is compatible with observations in all patch cosmologies even for large p.Comment: 16 pages, 11 figures; v2: updated references, minor corrections to match the Phys. Rev. D versio

    Anyonic Realization of the Quantum Affine Lie Superalgebra U_q(A(M,N)^{(1)})

    Full text link
    We give a realization of the quantum affine Lie superalgebras U_q(A(M,N))^(1) in terms of anyons defined on a one or two-dimensional lattice, the deformation parameter q being related to the statistical parameter ν\nu of the anyons by q = exp(i\pi\nu). The construction uses anyons contructed from usual fermionic oscillators and deformed bosonic oscillators. As a byproduct, realization deformed in any sector of the quantum superalgebras U_q(A(M,N)) is obtained.Comment: 14p LaTeX Document (should be run twice

    Compounds with antioxidant activity as a supplement of media used for human semen cryopreservation: a narrative review

    Get PDF
    Sperm cryopreservation is an important technique in preserving male fertility. Several methods for semen and sperm cryopreservation are available; however, the quality of thawed spermatozoa is poor and this is due to different mechanisms during the freezing-thawing process, including temperature changes, crystal ice formation, osmotic stress and oxidative stress (OS). OS is the result of an overproduction of reactive oxygen species (ROS) that, if present in high concentration, can damage the cellular structures and impair sperm function. Modulation of OS is an important issue in human sperm freezing. A large group of antioxidant molecules is used in cryopreservation processes as a pharmacological strategy to counteract the oxidizing effects of preservation procedures and thus protect sperm quality. The main body of the review comprises the analysis of different studies, starting from 2000 up to the present, dealing with the effects of different antioxidant compounds, including natural extract, used as supplement of cryopreservation media. Many studies have reported several beneficial effects of antioxidants that are added during freezing-thawing protocols on sperm cryo-damages; however, these improvements are not always evident. Over the past decade, the attention has been mainly focused on the phytoextracts and natural extracts. Phytoextracts can be obtained by waste products, which are a rich source of compounds with strong antioxidant activity. Because these by-products can be used in the industrial, cosmetic, nutraceutical, and human and animal reproductive fields, this topic of research is worthwhile implementing. The freezing and thawing protocols still have many pitfalls and the quality of thawed spermatozoa is not satisfactory. For this reason, new strategies to minimize cyodamages and to increase sperm cryostability are advisable to guarantee better sperm function and survival, permitting successful future clinical application

    Gauge-Invariant Quasi-Free States on the Algebra of the Anyon Commutation Relations

    Get PDF
    Let X=R2X=\mathbb R^2 and let qCq\in\mathbb C, q=1|q|=1. For x=(x1,x2)x=(x^1,x^2) and y=(y1,y2)y=(y^1,y^2) from X2X^2, we define a function Q(x,y)Q(x,y) to be equal to qq if x1y1x^1y^1, and to q\Re q if x1=y1x^1=y^1. Let x+\partial_x^+, x\partial_x^- (xXx\in X) be operator-valued distributions such that x+\partial_x^+ is the adjoint of x\partial_x^-. We say that x+\partial_x^+, x\partial_x^- satisfy the anyon commutation relations (ACR) if x+y+=Q(y,x)y+x+\partial^+_x\partial_y^+=Q(y,x)\partial_y^+\partial_x^+ for xyx\ne y and xy+=δ(xy)+Q(x,y)y+x\partial^-_x\partial_y^+=\delta(x-y)+Q(x,y)\partial_y^+\partial^-_x for (x,y)X2(x,y)\in X^2. In particular, for q=1q=1, the ACR become the canonical commutation relations and for q=1q=-1, the ACR become the canonical anticommutation relations. We define the ACR algebra as the algebra generated by operator-valued integrals of x+\partial_x^+, x\partial_x^-. We construct a class of gauge-invariant quasi-free states on the ACR algebra. Each state from this class is completely determined by a positive self-adjoint operator TT on the real space L2(X,dx)L^2(X,dx) which commutes with any operator of multiplication by a bounded function ψ(x1)\psi(x^1). In the case q0\Re q0), we discuss the corresponding particle density ρ(x):=x+x\rho(x):=\partial_x^+\partial_x^-. For q(0,1]\Re q\in(0,1], using a renormalization, we rigorously define a vacuum state on the commutative algebra generated by operator-valued integrals of ρ(x)\rho(x). This state is given by a negative binomial point process. A scaling limit of these states as κ\kappa\to\infty gives the gamma random measure, depending on parameter q\Re q

    Overall quality and antioxidant enzymes of ready‐to‐eat ‘Purple Queen’ pomegranate arils during cold storage

    Get PDF
    This study evaluated the effectiveness of two different packaging systems, using micro-perforated (MPP) and semipermeable (SP) films, on the physico-chemical and nutraceutical traits, microbial quality, and antioxidant enzymatic system of ready-to-eat pomegranate (Punica granatum L.) arils (cultivar ‘Purple Queen’) stored at 5 °C for 16 d. Statistically significant differences in gas composition and arils qualitative traits such as pH and titratable acidity between the two packaging systems were found. Arils packaged in the SP system had higher polyphenols and anthocyanins contents, followed by a high antioxidant activity, with a positive correlation (r=0.610 and 0.940, respectively) among them. An increase in the activities of antioxidant enzymes, such as superoxide dismutase, catalase, and ascorbate peroxidase, were registered in the arils in the SP system, with a decrease in polyphenol oxidase and peroxidase activity involved in arils-browning. Overall, SP packaging could be a valid system to preserve ready-to-eat arils within food chains that maintain high qualitative and nutraceutical features up to 16 d of storage
    corecore