44 research outputs found

    Design and investigation of surface addressable Photonic Crystal cavity confined band edge modes for quantum photonic devices

    Full text link
    We propose to use a localized G-point slow Bloch mode in a 2D-Photonic Crystal (PC) membrane to realize an efficient surface emitting source. This device can be used as a quantum photonic device, e.g. a single photon source. The physical mechanisms to increase the Q/V factor and to improve the directivity of the PC microcavity rely on a fine tuning of the geometry in the three directions of space. The PC lateral mirrors are first engineered in order to optimize photons confinement. Then, the effect of a Bragg mirror below the 2DPC membrane is investigated in terms of out-of-plane leakages and far field emission pattern. This photonic heterostructure allows for a strong lateral confinement of photons, with a modal volume of a few (λ/n)3 and a Purcell factor up to 80, as calculated by two different numerical methods. We finally discuss the efficiency of the single photon source for different collection set-up. © 2011 Optical Society of America

    Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal

    Get PDF
    International audienceThe authors report on the design, fabrication and operation of heterogeneous and compact "2.5 D" Photonic Crystal microlaser with a single plane of InAs quantum dots as gain medium. The high quality factor photonic structures are tailored for vertical emission. The devices consist of a top two-dimensional InP Photonic Crystal Slab, a SiO 2 bonding layer, and a bottom high index contrast Si/SiO 2 Bragg mirror deposited on a Si wafer. Despite the fact that no more than about 5% of the quantum dots distribution effectively contribute to the modal gain, room-temperature lasing operation, around 1.5µm, was achieved by photopumping. A low effective threshold, on the order of 350µW, and a spontaneous emission factor, over 0.13, could be deduced from experiments

    Photonic crystals: A novel approach to enhance the light output of scintillation based detectors

    No full text
    Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high electronic density, resulting in a large index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent studies have shown that those limits can be overcome by means of light scattering effects of photonic crystals (PhCs). In our simulations we could show light yield improvements between 90\% and 110\% when applying PhC structures to different scintillator materials. To evaluate the results, a PhC modified scintillator was produced in cooperation with the NIL (Nanotechnology Institute of Lyon). By using silicon nitride (Si(3)N(4)) as a transfer material for the PhC pattern and a 70 nm thick Indium Tin Oxide (ITO) layer for the electrical conductivity during the lithography process, we could successfully fabricate first samples of PhC areas on top of LYSO crystals. (C) 2010 Elsevier B.V. All rights reserved

    Analysis of Hybrid Photonic Crystal Vertical Cavity Surface Emitting Lasers

    No full text
    Vertical resonators with a top mirror constituted of ID photonic crystal membrane on top of a Bragg stack are investigated in this paper. These structures allow the fabrication of compact vertical-cavity surface-emitting lasers, which can be designed, i
    corecore