798 research outputs found
Fractal-like structures in colloid science
The present work aims at reviewing our current understanding of fractal structures in the frame of colloid aggregation as well as the possibility they offer to produce novel structured materials. In particular, the existing techniques to measure and compute the fractal dimension df are critically discussed based on the cases of organic/inorganic particles and proteins. Then the aggregation conditions affecting df are thoroughly analyzed, pointing out the most recent literature findings and the limitations of our current understanding. Finally, the importance of the fractal dimension in applications is discussed along with possible directions for the production of new structured materials
Recommended from our members
Geometrically Designed Variable Knot Splines in Generalized (Non-)Linear Models
In this paper we extend the GeDS methodology, recently developed by Kaishev et al. (2016) for the Normal univariate spline regression case, to the more general GNM (GLM) context. Our approach is to view the (non-)linear predictor as a spline with free knots which are estimated, along with the regression coefficients and the degree of the spline, using a two stage algorithm. In stage A, a linear (degree one) free-knot spline is fitted to the data applying iteratively re-weighted least squares. In stage B, a Schoenberg variation diminishing spline approximation to the fit from stage A is constructed, thus simultaneously producing spline fits of second, third and higher degrees. We demonstrate, based on a thorough numerical investigation that the nice properties of the Normal GeDS methodology carry over to its GNM extension and GeDS favourably compares with other existing spline methods. The proposed GeDS GNM(GLM) methodology is extended to the multivariate case of more than one independent variable by utilizing tensor product splines and their related shape preserving variation diminishing property
Determination of the photodisintegration reaction rates involving charged particles: systematical calculations and proposed measurements based on Extreme Light Infrastructure - Nuclear Physics (ELI-NP)
Photodisintegration reaction rates involving charged particles are of
relevance to the p-process nucleosynthesis that aims at explaining the
production of the stable neutron-deficient nuclides heavier than iron. In this
study, the cross sections and astrophysical rates of (g,p) and (g,a) reactions
for about 3000 target nuclei with 10<Z<100 ranging from stable to proton
dripline nuclei are computed. To study the sensitivity of the calculations to
the optical model potentials (OMPs), both the phenomenological Woods-Saxon and
the microscopic folding OMPs are taken into account. The systematic comparisons
show that the reaction rates, especially for the (g,a) reaction, are
dramatically influenced by the OMPs. Thus the better determination of the OMP
is crucial to reduce the uncertainties of the photodisintegration reaction
rates involving charged particles. Meanwhile, a gamma-beam facility at ELI-NP
is being developed, which will open new opportunities to experimentally study
the photodisintegration reactions of astrophysics interest. Considering both
the important reactions identified by the nucleosynthesis studies and the
purpose of complementing the experimental results for the reactions involving
p-nuclei, the measurements of six (g,p) and eight (g,a) reactions based on the
gamma-beam facility at ELI-NP and the ELISSA detector for the charged particles
detection are proposed, and the GEANT4 simulations are correspondingly
performed. The minimum required energies of the gamma-beam to measure these
reactions are estimated. It is shown that the direct measurements of these
photonuclear reactions within the Gamow windows at T_9=2.5 for p-process are
fairly feasible and promising at ELI-NP. The expected experimental results will
be used to constrain the OMPs of the charged particles, which can eventually
reduce the uncertainties of the reaction rates for the p-process
nucleosynthesis.Comment: 14 pages, 8 figures, Phys. Rev. C accepte
Strain threshold for ventilator-induced lung injury
Introduction Unphysiological lung strain (tidal volume/functional residual capacity, TV/FRC) may cause ventilator-induced lung injury (VILI) [1]. Whether VILI develops proportionally to the applied strain or only above a critical threshold remains unknown. Methods In 20 healthy, mechanically ventilated pigs, FRC and lung weight were measured by computed tomography. Animals were then
ventilated for up to 54 hours with a TV set to produce a predetermined strain. At the end, lung weight was measured with a balance. VILI was defi ned as fi nal lung weight exceeding the initial one.
Results Lung weight either did not increase at all (no-VILI group; lung weight change \u201373 \ub1 42 g, n = 9) or markedly augmented (VILI group; 264 \ub1 80 g, n = 11). In the two groups, strain was 1.38 \ub1 0.68 and 2.16 \ub1 0.50 (P <0.01), respectively. VILI occurred only when lung strain reached or exceeded a critical threshold, between 1.5 and 2.1 (Figure 1). Conclusions In animals with healthy lungs VILI only occurs when lung strain exceeds a critical threshold. Reference 1. Gattinoni L, Carlesso E, Cadringher P, et al.: Physical and biological triggers of ventilator-induced lung injury and its prevention [review]. Eur Respir J 2003, 22(Suppl 47):15s-25s
Fusion rate enhancement due to energy spread of colliding nuclei
Experimental results for sub-barrier nuclear fusion reactions show cross
section enhancements with respect to bare nuclei which are generally larger
than those expected according to electron screening calculations. We point out
that energy spread of target or projectile nuclei is a mechanism which
generally provides fusion enhancement. We present a general formula for
calculating the enhancement factor and we provide quantitative estimate for
effects due to thermal motion, vibrations inside atomic, molecular or crystal
system, and due to finite beam energy width. All these effects are marginal at
the energies which are presently measurable, however they have to be considered
in future experiments at still lower energies. This study allows to exclude
several effects as possible explanation of the observed anomalous fusion
enhancements, which remain a mistery.Comment: 17 pages with 3 ps figure included. Revtex styl
A Business Process Reengineering of the Surgical Path through Lean Technique: The Real Case Study of a Midsize Italian Hospital
This period of pandemic has had important consequences on the flow and the entire organization of any hospital. In particular, the number of accesses to the emergency room has increased, with the consequent urgent need to reorgani ze it quickly. The model proposed in this paper allows to respond to these needs by freeing not only shifts of nursing staff but also surgical staff. This workforce can then be relocated in the emergency room or of the intensive care unit who are in fact at the forefront of emergency management. The aim of this study conducted by the authors is to analyze, inside the context of a midsize Italian hospital, the actual organization model, and then to approach it by Business Process Reengineering (BPR) methodology with the goal to propose a KPI management system that evaluates the efficiency of the whole surgical path. The second objective of the study is to verify if the Operating Rooms (ORs) are properly sized to cover the surgical workload or if it would be necessary to build new ORs (answer to this question is the project mandate by Surgical Wards Chiefs). The last objective is to implement a flexible to cope with emergency situations such as a pandemic. The main result is the approximate maintenance of surgical annual activity (8169 vs 7889). The fewer resources required can be reallocated to deal with emergencies such as the current COVID-19 pandemic. In fact, the surgical shifts decreased during the test case from 464 versus 365 (-15,32%). The rooms’ utilization coefficient rose from 41% to over 52%, whereas the surgeons’ utilization coefficient rose to 61% (with values over 68% for parallel shifts). The results achieved demonstrate that improving efficiency of surgical processes is feasible and a systematic approach allows to respond to new global health challenges
- …