196 research outputs found

    Resonance and frequency-locking phenomena in spatially extended phytoplankton-zooplankton system with additive noise and periodic forces

    Full text link
    In this paper, we present a spatial version of phytoplankton-zooplankton model that includes some important factors such as external periodic forces, noise, and diffusion processes. The spatially extended phytoplankton-zooplankton system is from the original study by Scheffer [M Scheffer, Fish and nutrients interplay determines algal biomass: a minimal model, Oikos \textbf{62} (1991) 271-282]. Our results show that the spatially extended system exhibit a resonant patterns and frequency-locking phenomena. The system also shows that the noise and the external periodic forces play a constructive role in the Scheffer's model: first, the noise can enhance the oscillation of phytoplankton species' density and format a large clusters in the space when the noise intensity is within certain interval. Second, the external periodic forces can induce 4:1 and 1:1 frequency-locking and spatially homogeneous oscillation phenomena to appear. Finally, the resonant patterns are observed in the system when the spatial noises and external periodic forces are both turned on. Moreover, we found that the 4:1 frequency-locking transform into 1:1 frequency-locking when the noise intensity increased. In addition to elucidating our results outside the domain of Turing instability, we provide further analysis of Turing linear stability with the help of the numerical calculation by using the Maple software. Significantly, oscillations are enhanced in the system when the noise term presents. These results indicate that the oceanic plankton bloom may partly due to interplay between the stochastic factors and external forces instead of deterministic factors. These results also may help us to understand the effects arising from undeniable subject to random fluctuations in oceanic plankton bloom.Comment: Some typos errors are proof, and some strong relate references are adde

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    Microfluidic Device for On-Chip Immunophenotyping and Cytogenetic Analysis of Rare Biological Cells

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.The role of circulating plasma cells (CPCs) and circulating leukemic cells (CLCs) as biomarkers for several blood cancers, such as multiple myeloma and leukemia, respectively, have recently been reported. These markers can be attractive due to the minimally invasive nature of their acquisition through a blood draw (i.e., liquid biopsy), negating the need for painful bone marrow biopsies. CPCs or CLCs can be used for cellular/molecular analyses as well, such as immunophenotyping or fluorescence in situ hybridization (FISH). FISH, which is typically carried out on slides involving complex workflows, becomes problematic when operating on CLCs or CPCs due to their relatively modest numbers. Here, we present a microfluidic device for characterizing CPCs and CLCs using immunofluorescence or FISH that have been enriched from peripheral blood using a different microfluidic device. The microfluidic possessed an array of cross-channels (2–4 µm in depth and width) that interconnected a series of input and output fluidic channels. Placing a cover plate over the device formed microtraps, the size of which was defined by the width and depth of the cross-channels. This microfluidic chip allowed for automation of immunofluorescence and FISH, requiring the use of small volumes of reagents, such as antibodies and probes, as compared to slide-based immunophenotyping and FISH. In addition, the device could secure FISH results in <4 h compared to 2–3 days for conventional FISH

    Evaluation of a Fotonovela to Increase Depression Knowledge and Reduce Stigma Among Hispanic Adults

    Get PDF
    Fotonovelas—small booklets that portray a dramatic story using photographs and captions— represent a powerful health education tool for low-literacy and ethnic minority audiences. This study evaluated the effectiveness of a depression fotonovela in increasing depression knowledge, decreasing stigma, increasing self-efficacy to recognize depression, and increasing intentions to seek treatment, relative to a text pamphlet. Hispanic adults attending a community adult school (N = 157, 47.5 % female, mean age = 35.8 years, 84 % immigrants, 63 % with less than high school education) were randomly assigned to read the fotonovela or a low-literacy text pamphlet about depression. They completed surveys before reading the material, immediately after reading the material, and 1 month later. The fotonovela and text pamphlet both produced significant improvements in depression knowledge and self-efficacy to identify depression, but the fotonovela produced significantly larger reductions in antidepressant stigma and mental health care stigma. The fotonovela also was more likely to be passed on to family or friends after the study, potentially increasing its reach throughout the community. Results indicate that fotonovelas can be useful for improving health literacy among underserved populations, which could reduce health disparities

    Automatic medical encoding with SNOMED categories

    Get PDF
    BACKGROUND: In this paper, we describe the design and preliminary evaluation of a new type of tools to speed up the encoding of episodes of care using the SNOMED CT terminology. METHODS: The proposed system can be used either as a search tool to browse the terminology or as a categorization tool to support automatic annotation of textual contents with SNOMED concepts. The general strategy is similar for both tools and is based on the fusion of two complementary retrieval strategies with thesaural resources. The first classification module uses a traditional vector-space retrieval engine which has been fine-tuned for the task, while the second classifier is based on regular variations of the term list. For evaluating the system, we use a sample of MEDLINE. SNOMED CT categories have been restricted to Medical Subject Headings (MeSH) using the SNOMED-MeSH mapping provided by the UMLS (version 2006). RESULTS: Consistent with previous investigations applied on biomedical terminologies, our results show that performances of the hybrid system are significantly improved as compared to each single module. For top returned concepts, a precision at high ranks (P0) of more than 80% is observed. In addition, a manual and qualitative evaluation on a dozen of MEDLINE abstracts suggests that SNOMED CT could represent an improvement compared to existing medical terminologies such as MeSH. CONCLUSION: Although the precision of the SNOMED categorizer seems sufficient to help professional encoders, it is concluded that clinical benchmarks as well as usability studies are needed to assess the impact of our SNOMED encoding method in real settings. AVAILABILITIES : The system is available for research purposes on: http://eagl.unige.ch/SNOCat

    Accreditation Standard Guideline Initiative for Tai Chi and Qigong Instructors and Training Institutions.

    Full text link
    Evidence of the health and wellbeing benefits of Tai Chi and Qigong (TQ) have emerged in the past two decades, but TQ is underutilized in modern health care in Western countries due to lack of promotion and the availability of professionally qualified TQ instructors. To date, there are no government regulations for TQ instructors or for training institutions in China and Western countries, even though TQ is considered to be a part of Traditional Chinese medicine that has the potential to manage many chronic diseases. Based on an integrative health care approach, the accreditation standard guideline initiative for TQ instructors and training institutions was developed in collaboration with health professionals, integrative medicine academics, Tai Chi and Qigong master instructors and consumers including public safety officers from several countries, such as Australia, Canada, China, Germany, Italy, Korea, Sweden and USA. In this paper, the rationale for organizing the Medical Tai Chi and Qigong Association (MTQA) is discussed and the accreditation standard guideline for TQ instructors and training institutions developed by the committee members of MTQA is presented. The MTQA acknowledges that the proposed guidelines are broad, so that the diversity of TQ instructors and training institutions can be integrated with recognition that these guidelines can be developed with further refinement. Additionally, these guidelines face challenges in understanding the complexity of TQ associated with different principles, philosophies and schools of thought. Nonetheless, these guidelines represent a necessary first step as primary resource to serve and guide health care professionals and consumers, as well as the TQ community

    Speech Communication

    Get PDF
    Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NS07040)National Institutes of Health (Grant 5 R01 NS04332)National Science Foundation (Grant 1ST 80-17599)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command Contract (N00039-85-C-0290
    • …
    corecore