49 research outputs found
Risk factor determination and qualitative risk assessment of Mucormycosis in Harbor Porpoise, an emergent fungal disease in Salish Sea marine mammals
Mucorales infections are increasing in frequency and are a One Health pathogen of concern. In humans and domestic animals, risk factors include being immunocompromised, elevated circulating serum iron, contaminated open wounds, or metabolic diseases such as ketoacidosis or uncontrolled diabetes. Mucormycosis was first identified in 2012 in Pacific Northwest marine mammals, predominantly in harbor porpoises. We performed an assessment to determine the overall qualitative risk, or risk score, of mucormycosis in harbor porpoises. Risk factors for this disease are unknown in aquatic mammals. In a separate risk factor analysis, potential risk factors such as pollutants, trace metals (e.g., iron), and co-infection with other pathogens (e.g., viruses and Brucella spp.) were examined in mucormycosis cases and noncases using a matched case-control study design, to determine the presence and strength of association of these factors with mucormycosis. Disease severity (gross and histopathology) and exposure scores were multiplied together to obtain the overall risk scores of 9 -16 which corresponded to moderate and severe, respectively. In the risk factor analysis, the factors most strongly associated with a mucormycosis case, relative to a control, were elevated liver iron, decreased blubber thickness, and the decreased ratio of the sum of PCB congeners/sum of PBDE congeners. The results of this study suggest that mucormycosis may pose an inordinately high risk to harbor porpoises (and potentially sympatric species in the Salish Sea such as southern resident killer whales) based on the detected prevalence and the severity of lesions observed at necropsy. However, the risk may be greater on an individual basis compared to the overall population, and is likely related to other factors such as increased POP and heavy metal burdens
Developing a placebo-controlled trial in surgery:issues of design, acceptability and feasibility
BACKGROUND: Surgical placebos are controversial. This in-depth study explored the design, acceptability, and feasibility issues relevant to designing a surgical placebo-controlled trial for the evaluation of the clinical and cost effectiveness of arthroscopic lavage for the management of people with osteoarthritis of the knee in the UK. METHODS: Two surgeon focus groups at a UK national meeting for orthopaedic surgeons and one regional surgeon focus group (41 surgeons); plenary discussion at a UK national meeting for orthopaedic anaesthetists (130 anaesthetists); three focus groups with anaesthetists (one national, two regional; 58 anaesthetists); two focus groups with members of the patient organisation Arthritis Care (7 participants); telephone interviews with people on consultant waiting lists from two UK regional centres (15 participants); interviews with Chairs of UK ethics committees (6 individuals); postal surveys of members of the British Association of Surgeons of the Knee (382 surgeons) and members of the British Society of Orthopaedic Anaesthetists (398 anaesthetists); two centre pilot (49 patients assessed). RESULTS: There was widespread acceptance that evaluation of arthroscopic lavage had to be conducted with a placebo control if scientific rigour was not to be compromised. The choice of placebo surgical procedure (three small incisions) proved easier than the method of anaesthesia (general anaesthesia). General anaesthesia, while an excellent mimic, was more intrusive and raised concerns among some stakeholders and caused extensive discussion with local decision-makers when seeking formal approval for the pilot.Patients were willing to participate in a pilot with a placebo arm; although some patients when allocated to surgery became apprehensive about the possibility of receiving placebo, and withdrew. Placebo surgery was undertaken successfully. CONCLUSIONS: Our study illustrated the opposing and often strongly held opinions about surgical placebos, the ethical issues underpinning this controversy, and the challenges that exist even when ethics committee approval has been granted. It showed that a placebo-controlled trial could be conducted in principle, albeit with difficulty. It also highlighted that not only does a placebo-controlled trial in surgery have to be ethically and scientifically acceptable but that it also must be a feasible course of action. The place of placebo-controlled surgical trials more generally is likely to be limited and require specific circumstances to be met. Suggested criteria are presented. TRIAL REGISTRATION NUMBER: The trial was assigned ISRCTN02328576 through http://controlled-trials.com/ in June 2006. The first patient was randomised to the pilot in July 2007
Recommended from our members
Increased harbor porpoise mortality in the Pacific Northwest, USA: understanding when higher levels may be normal
In 2006, a marked increase in harbor porpoise Phocoena phocoena strandings were reported in the Pacific Northwest of the USA, resulting in the declaration of an unusual mortality event (UME) for Washington and Oregon to facilitate investigation into potential causes. The UME was in place during all of 2006 and 2007, and a total of 114 porpoises stranded during this period. Responders examined 95 porpoises; of these, detailed necropsies were conducted on 75 animals. Here we review the findings related to this event and how these compared to the years immediately before and after the UME. Relatively equal numbers among sexes and age classes were represented, and mortalities were attributed to a variety of specific causes, most of which were categorized as trauma or infectious disease. Continued monitoring of strandings during 4 yr following the UME showed no decrease in occurrence. The lack of a single major cause of mortality or evidence of a significant change or event, combined with high levels of strandings over several post-UME years, demonstrated that this was not an actual mortality event but was likely the result of a combination of factors, including: (1) a growing population of harbor porpoises; (2) expansion of harbor porpoises into previously sparsely populated areas in Washington’s inland waters; and (3) a more well established stranding network that resulted in better reporting and response. This finding would not have been possible without the integrated response and investigation undertaken by the stranding network.Keywords: Unusual mortality event, Pacific Northwest, Phocoena phocoena, StrandingKeywords: Unusual mortality event, Pacific Northwest, Phocoena phocoena, Strandin
Enhanced Characterization of the Smell of Death by Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GCxGC-TOFMS)
Soon after death, the decay process of mammalian soft tissues begins and leads to the release of cadaveric volatile compounds in the surrounding environment. The study of postmortem decomposition products is an emerging field of study in forensic science. However, a better knowledge of the smell of death and its volatile constituents may have many applications in forensic sciences. Domestic pigs are the most widely used human body analogues in forensic experiments, mainly due to ethical restrictions. Indeed, decomposition trials on human corpses are restricted in many countries worldwide. This article reports on the use of comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) for thanatochemistry applications. A total of 832 VOCs released by a decaying pig carcass in terrestrial ecosystem, i.e. a forest biotope, were identified by GCxGC-TOFMS. These postmortem compounds belong to many kinds of chemical class, mainly oxygen compounds (alcohols, acids, ketones, aldehydes, esters), sulfur and nitrogen compounds, aromatic compounds such as phenolic molecules and hydrocarbons. The use of GCxGC-TOFMS in study of postmortem volatile compounds instead of conventional GC-MS was successful
Self-Mating in the Definitive Host Potentiates Clonal Outbreaks of the Apicomplexan Parasites Sarcocystis neurona and Toxoplasma gondii
Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks
Generation of virtual reality environments using expert systems
This paper describes a system for generating virtual reality environments and, more
specifically, three-dimensional geometric models of large-scale urban areas for driving
instruction simulators. These models include roads, buildings, road signs and road markings.
Such models also find application in other training simulators, virtual reality environments
and games
Polyparasitism is associated with increased disease severity in Toxoplasma gondii-infected marine sentinel species.
In 1995, one of the largest outbreaks of human toxoplasmosis occurred in the Pacific Northwest region of North America. Genetic typing identified a novel Toxoplasma gondii strain linked to the outbreak, in which a wide spectrum of human disease was observed. For this globally-distributed, water-borne zoonosis, strain type is one variable influencing disease, but the inability of strain type to consistently explain variations in disease severity suggests that parasite genotype alone does not determine the outcome of infection. We investigated polyparasitism (infection with multiple parasite species) as a modulator of disease severity by examining the association of concomitant infection of T. gondii and the related parasite Sarcocystis neurona with protozoal disease in wild marine mammals from the Pacific Northwest. These hosts ostensibly serve as sentinels for the detection of terrestrial parasites implicated in water-borne epidemics of humans and wildlife in this endemic region. Marine mammals (151 stranded and 10 healthy individuals) sampled over 6 years were assessed for protozoal infection using multi-locus PCR-DNA sequencing directly from host tissues. Genetic analyses uncovered a high prevalence and diversity of protozoa, with 147/161 (91%) of our sampled population infected. From 2004 to 2009, the relative frequency of S. neurona infections increased dramatically, surpassing that of T. gondii. The majority of T. gondii infections were by genotypes bearing Type I lineage alleles, though strain genotype was not associated with disease severity. Significantly, polyparasitism with S. neurona and T. gondii was common (42%) and was associated with higher mortality and more severe protozoal encephalitis. Our finding of widespread polyparasitism among marine mammals indicates pervasive contamination of waterways by zoonotic agents. Furthermore, the significant association of concomitant infection with mortality and protozoal encephalitis identifies polyparasitism as an important factor contributing to disease severity in marine mammals