360 research outputs found

    Arthroscopic repair of subscapularis tear: Surgical technique and results

    Get PDF
    SummaryIntroductionArthroscopic management of extensive subscapularis tendon lesions was reported more recently than for the supra- and infra-spinatus tendons. Extensive tears create technical problems requiring an extra-articular approach. The few results so far reported have been encouraging.Study designSurgical techniques adapted to each type of tear according to our subscapularis lesion classification are described, with the preliminary results from our cohort.Patients and methodsBetween January 2006 and December 2008, 74 patients were operated on for extensive subscapularis tear. Twenty-three were assessed over a minimum 2 years’ follow-up (mean, 32 months) on UCLA, ASES and Constant scores, comparative dynamometric Bear-Hug test, visual analog pain scale and self-assessed shoulder function.ResultsPostoperative clinical results for the 23 patients followed up showed an improvement in shoulder function from 58 to 86%, in UCLA score from 16.4 to 30.9 points and in weighted Constant score from 48.6 to 75.2%.DiscussionIn case of severe tear, we recommend visualizing the subscapularis tendon along its main axis from above, on a lateral approach allowing the intra- and extra-articular parts to be controlled, so as to check the reduction achieved by traction wire and anatomic fixation by anchors and sutures via an anterior access of varying height but systematically kept under tension. Biceps tenodesis is often required. Results show a clear improvement on all scores: pain, strength and function. The failure rate was 9% (two cases). There were no complications.Level of evidenceIV (retrospective study)

    Prompt Alpha Decay of a Well-deformed Band in 58Ni

    Get PDF
    Two excited well-deformed bands have been observed in the semi-magic nucleus Ni-58. One of the bands was observed to partially decay by emission of a prompt discrete alpha particle that feeds the 2949 keV 6(+) spherical yrast state in the daughter nucleus Fe-54. This constitutes the first observation of prompt alpha emission from states lying in the deformed secondary minimum of the nuclear potential. gamma -ray linking transitions via several parallel paths establish the spin. parity, and excitation energy of this deformed band in Ni-58

    Temporal resolution deficits in the visual fields of MS patients

    Get PDF
    AbstractWe assessed the relationship between temporal resolution and MS-induced neuropathy. A diagnostic strategy comprising assessments of temporal resolution at 16 points in the extra-foveal visual field up to 12° from the fovea was first compared with foveal temporal resolution and with a standard VEP procedure in the same MS patients. At the group level, foveal temporal resolution was less sensitive to demyelination than the 16-point diagnostic strategy, the detection rate of which was comparable to that of the VEP procedure. Cross-sensitivity of the VEP and the 16-point diagnostic procedure was low. Subsequently, the average severity of MS-induced temporal resolution deficits was studied at three retinal loci of the same size but different eccentricities. Foveal deficits were not significantly greater than more peripheral deficits within the central 12°

    Prompt Alpha Decay of a Well-deformed Band in 58Ni

    Get PDF
    Two excited well-deformed bands have been observed in the semi-magic nucleus Ni-58. One of the bands was observed to partially decay by emission of a prompt discrete alpha particle that feeds the 2949 keV 6(+) spherical yrast state in the daughter nucleus Fe-54. This constitutes the first observation of prompt alpha emission from states lying in the deformed secondary minimum of the nuclear potential. gamma -ray linking transitions via several parallel paths establish the spin. parity, and excitation energy of this deformed band in Ni-58

    LO-phonon assisted polariton lasing in a ZnO based microcavity

    Full text link
    Polariton relaxation mechanisms are analysed experimentally and theoretically in a ZnO-based polariton laser. A minimum lasing threshold is obtained when the energy difference between the exciton reservoir and the bottom of the lower polariton branch is resonant with the LO phonon energy. Tuning off this resonance increases the threshold, and exciton-exciton scattering processes become involved in the polariton relaxation. These observations are qualitatively reproduced by simulations based on the numerical solution of the semi-classical Boltzmann equations

    X-ray photodesorption of complex organic molecules in protoplanetary disks -- I. Acetonitrile CH3CN

    Full text link
    X-rays emitted from pre-main-sequence stars at the center of protoplanetary disks can induce nonthermal desorption from interstellar ices populating the cold regions. This X-ray photodesorption needs to be quantified for complex organic molecules (COMs), including acetonitrile CH3CN, which has been detected in several disks. We experimentally estimate the X-ray photodesorption yields of neutral species from pure CH3CN ices and from interstellar ice analogs for which CH3CN is mixed either in a CO- or H2O-dominated ice. The ices were irradiated at 15 K by soft X-rays (400-600 eV) from synchrotron light (SOLEIL synchrotron). X-ray photodesorption was probed in the gas phase via quadrupole mass spectrometry. X-ray photodesorption yields were derived from the mass signals and were extrapolated to higher X-ray energies for astrochemical models. X-ray photodesorption of the intact CH3CN is detected from pure CH3CN ices and from mixed 13CO:CH3CN ices, with a yield of about 5x10^(-4) molecules/photon at 560 eV. When mixed in H2O-dominated ices, X-ray photodesorption of the intact CH3CN at 560 eV is below its detection limit, which is 10^(-4) molecules/photon. Yields associated with the desorption of HCN, CH4 , and CH3 are also provided. The derived astrophysical yields significantly depend on the local conditions expected in protoplanetary disks. They vary from 10^(-4) to 10(-6) molecules/photon for the X-ray photodesorption of intact CH3CN from CO-dominated ices. Only upper limits varying from 5x10^(-5) to 5x10^(-7) molecules/photon could be derived for the X-ray photodesorption of intact CH3CN from H2O-dominated ices. X-ray photodesorption of intact CH3CN from interstellar ices might in part explain the abundances of CH3CN observed in protoplanetary disks. The desorption efficiency is expected to vary with the local physical conditions, hence with the disk region

    Alkali Doping Leads to Charge-Transfer Salt Formation in a Two-Dimensional Metal–Organic Framework

    Get PDF
    Efficient charge transfer across metal–organic interfaces is a key physical process in modern organic electronics devices, and characterization of the energy level alignment at the interface is crucial to enable a rational device design. We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metal–organic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different from those of the two-dimensional Ag adatom TCNQ metal–organic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative X-ray standing wave measurements, scanning tunnelling microscopy, and density-functional theory (DFT) calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. The commensurate surface layer formed by TCNQ and K is dominated by strong charge transfer and ionic bonding and is accompanied by a structural and electronic decoupling from the underlying metal substrate. The consequence is a significant change in energy level alignment and work function compared to TCNQ on Ag(111). Possible implications of charge-transfer salt formation at metal–organic interfaces for organic thin-film devices are discussed
    • 

    corecore