259 research outputs found

    Experimental determination of rolling element bearing stiffness

    Get PDF
    In 1990, Lim and Singh presented a complete 6-dof roller-bearing stiffness model. The experimental verification (using an instrumental variables identification procedure) of all the stiffness coefficients of such a bearing appeared to be difficult, because the experimental setup showed some unexpected properties. In this paper the (modified) experimental setup will be presented to get reproducible measurements. Estimating all the stiffness matrix coefficients simultaneously from measured transfer functions still appeared to be unfeasible. Therefore, a 1-dof amplitude fit procedure has been applied. The results appear to be very promising and applicable in practice, but future research certainly is necessary to understand the remaining differences between the mathematical model and measurements. In addition to stiffnesses, the procedure also gives damping values. Finally, matters such as hysteresis, reproducibility and reciprocity have been investigated

    Experimental determination of rolling element bearing stiffness

    Get PDF
    In 1990, Lim and Singh presented a complete 6-dof roller-bearing stiffness model. The experimental verification (using an instrumental variables identification procedure) of all the stiffness coefficients of such a bearing appeared to be difficult, because the experimental setup showed some unexpected properties. In this paper the (modified) experimental setup will be presented to get reproducible measurements. Estimating all the stiffness matrix coefficients simultaneously from measured transfer functions still appeared to be unfeasible. Therefore, a 1-dof amplitude fit procedure has been applied. The results appear to be very promising and applicable in practice, but future research certainly is necessary to understand the remaining differences between the mathematical model and measurements. In addition to stiffnesses, the procedure also gives damping values. Finally, matters such as hysteresis, reproducibility and reciprocity have been investigated

    Automated PGP9.5 immunofluorescence staining: a valuable tool in the assessment of small fiber neuropathy?

    No full text
    BACKGROUND: In this study we explored the possibility of automating the PGP9.5 immunofluorescence staining assay for the diagnosis of small fiber neuropathy using skin punch biopsies. The laboratory developed test (LDT) was subjected to a validation strategy as required by good laboratory practice guidelines and compared to the well-established gold standard method approved by the European Federation of Neurological Societies (EFNS). To facilitate automation, the use of thinner sections. (16 µm) was evaluated. Biopsies from previously published studies were used. The aim was to evaluate the diagnostic performance of the LDT compared to the gold standard. We focused on technical aspects to reach high-quality standardization of the PGP9.5 assay and finally evaluate its potential for use in large scale batch testing. RESULTS: We first studied linear nerve fiber densities in skin of healthy volunteers to establish reference ranges, and compared our LDT using the modifications to the EFNS counting rule to the gold standard in visualizing and quantifying the epidermal nerve fiber network. As the LDT requires the use of 16 µm tissue sections, a higher incidence of intra-epidermal nerve fiber fragments and a lower incidence of secondary branches were detected. Nevertheless, the LDT showed excellent concordance with the gold standard method. Next, the diagnostic performance and yield of the LDT were explored and challenged to the gold standard using skin punch biopsies of capsaicin treated subjects, and patients with diabetic polyneuropathy. The LDT reached good agreement with the gold standard in identifying small fiber neuropathy. The reduction of section thickness from 50 to 16 µm resulted in a significantly lower visualization of the three-dimensional epidermal nerve fiber network, as expected. However, the diagnostic performance of the LDT was adequate as characterized by a sensitivity and specificity of 80 and 64 %, respectively. CONCLUSIONS: This study, designed as a proof of principle, indicated that the LDT is an accurate, robust and automated assay, which adequately and reliably identifies patients presenting with small fiber neuropathy, and therefore has potential for use in large scale clinical studies

    Diesel Engine Exhaust Initiates a Sequence of Pulmonary and Cardiovascular Effects in Rats

    Get PDF
    This study was designed to determine the sequence of events leading to cardiopulmonary effects following acute inhalation of diesel engine exhaust in rats. Rats were exposed for 2 h to diesel engine exhaust (1.9 mg/m3), and biological parameters related to antioxidant defense, inflammation, and procoagulation were examined after 4, 18, 24, 48, and 72 h. This in vivo inhalation study showed a pulmonary anti-oxidant response (an increased activity of the anti-oxidant enzymes glutathione peroxidase and superoxide dismutase and an increase in heme oxygenase-1 protein, heme oxygenase activity, and uric acid) which precedes the inflammatory response (an increase in IL-6 and TNF-α). In addition, increased plasma thrombogenicity and immediate anti-oxidant defense gene expression in aorta tissue shortly after the exposure might suggest direct translocation of diesel engine exhaust components to the vasculature but mediation by other pathways cannot be ruled out. This study therefore shows that different stages in oxidative stress are not only affected by dose increments but are also time dependent

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention.

    Get PDF
    AIMS: In the era of personalized medicine, it is of utmost importance to be able to identify subjects at the highest cardiovascular (CV) risk. To date, single biomarkers have failed to markedly improve the estimation of CV risk. Using novel technology, simultaneous assessment of large numbers of biomarkers may hold promise to improve prediction. In the present study, we compared a protein-based risk model with a model using traditional risk factors in predicting CV events in the primary prevention setting of the European Prospective Investigation (EPIC)-Norfolk study, followed by validation in the Progressione della Lesione Intimale Carotidea (PLIC) cohort. METHODS AND RESULTS: Using the proximity extension assay, 368 proteins were measured in a nested case-control sample of 822 individuals from the EPIC-Norfolk prospective cohort study and 702 individuals from the PLIC cohort. Using tree-based ensemble and boosting methods, we constructed a protein-based prediction model, an optimized clinical risk model, and a model combining both. In the derivation cohort (EPIC-Norfolk), we defined a panel of 50 proteins, which outperformed the clinical risk model in the prediction of myocardial infarction [area under the curve (AUC) 0.754 vs. 0.730; P < 0.001] during a median follow-up of 20 years. The clinically more relevant prediction of events occurring within 3 years showed an AUC of 0.732 using the clinical risk model and an AUC of 0.803 for the protein model (P < 0.001). The predictive value of the protein panel was confirmed to be superior to the clinical risk model in the validation cohort (AUC 0.705 vs. 0.609; P < 0.001). CONCLUSION: In a primary prevention setting, a proteome-based model outperforms a model comprising clinical risk factors in predicting the risk of CV events. Validation in a large prospective primary prevention cohort is required to address the value for future clinical implementation in CV prevention
    corecore