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Abstract 
In 1990, Lim and Singh presented a complete 6-dof roller-bearing stiffness model. The ex- 

perimental verification (using an instrumental variables identification procedure) of all the 

stiffness coefficients of such a bearing appeared to be difficult, because the experimental setup 

showed some unexpected properties. In this paper the (modified) experimental setup will be 

presented to get reproducible measurements. Estimating all the stiffness matrix coefficients 

simultaneously from measured transfer functions still appeared to be unfeasible. Therefore, a 

1-dof amplitude fit procedure has been applied. The results appear to be very promising and 

applicable in practice, but future research certainly is necessary to understand the remaining 
differences between the mathematical model and measurements. In addition to stiffnesses, 

the procedure also gives damping values. Finally, matters such as hysteresis, reproducibility 

and reciprocity have been investigated. 

1. Introduction 

Noise and vibration generated by rotating 

mechanical equipment have always been a 
problem in the implementation of new tech- 

nology in automobiles, rotorcrafts and in- 

dustrial machines. In many rotating sys- 

tems, the vibration transmission through 

roller-bearings is very important. Hence, for 
a reliable mathematical model of the over- 

all dynamic system, a thorough understand- 

ing of the vibration transmission mechanism 

through bearings, and the role of bearings 

as a dynamic coupler between the shaft and 

casing, is essential. In general, existing bear- 

ing models only describe radial and axial 

stiffnesses. Many experiments however have 

shown the importance of flexural or out-of- 

plane type deformations. In 1990, Lim and 

Singh have presented a 6-dof bearing stiff- 

ness model (3 transl./3 rot.), see [l], and this 

*Address all correspondence to this author. 

model is further improved by Van Roosmalen 

in 1994 by taking a non-uniform load distri- 

bution on the line contact between the inner 

race, roller and outer race of the bearing (see 

[31, PQ- 
A first experimental approach to identify 

the complete bearing stiffness matrix with 
an instrumental variables identification algo- 

rithm [2] did not lead to sufficiently accu- 

rate results due to non-reproducibility of the 

measurements and inaccuracy in the torque 

stiffnesses. Applying higher preloads was 

thought to be the best solution to this prob- 

lem, as in practice no rolling element is al- 

lowed to lose contact. 

In this paper an updated experimental setup 

is presented by which bearing stiffnesses 

can be measured, without the occurrence 

of non-reproducibility and with high accu- 

racy in the rotational stiffnesses. Subse- 

quently, the experimentally determined stiff- 

ness can be compared to the theoretical 



model which gives a decisive answer to the 

question whether the model is suitable for the 

accurate prediction of rolling element bear- 

ing stiffnesses, used for vibration prediction 

purposes. 

2. The Bearing Model 

In the extended bearing model mentioned be- 

fore, 3 translational and 3 rotational dof’s are 

taken into account, leading to a 6x6 stiff- 

ness matrix. The model can be used for deep 

groove ball bearings, angular contact ball 
bearings, straight roller bearings and taper 

roller bearings under the following assump- 

tions. 

2.1 Assumptions 

l Elliptical contacts for ball-bearings and 

rectangular contacts for roller bearings. 

l Contact angles of the ball types may 
change, but for the roller types they are as- 

sumed to be constant. 
l Each bearing is characterized by its kine- 

matic and design parameters, such as: un- 

loaded contact angle ~0, radial clearance r~, 

effective stiffness coefficient K, for each ring- 

rolling element-ring contact, preloads, inner 
raceway groove curvature radius for ball type 

and bearing pitch radius for roller type. 
l Mean bearing displacements as shown in 

Figure 1 are given by the relative rigid body 
motions between the inner and outer rings. 

l Hertzian contact stress theory is valid. 

l Relative rolling element position is fixed. 

l No centrifugal forces or gyroscopic effects. 

l No tribological effects. 

0 Zero-stiffness axial rotation. 

2.2 Load-displacement functions 

For the derivation of the relations be- 

tween the bearing forces and moments 

[Fzbm, Fybm, Fzbmf i&h, Mybm] and the 
global bearing displacements [(&ml as given 

in Figure 1 we refer to the paper of Lim [l]. 

6 Ym 
F ybm 

6 Ym 

F ybm 
ty 

Figure 1: Rolling element bearing kinematics and 
coordinate system 

A symmetric bearing stiffness matrix of di- 

mension 6x6 can be defined for: w, i = 2, y, z 

as: 

&-bm = 

Each stiffness coefficient is evaluated at the 

static equilibrium point [@ml. It can be 
proved that the matrix is symmetric. For 
explicit expressions we refer to [l] and nu- 

merical values can be generated by the pro- 

gramme ‘Lager’, see [4]. 

2.3 Model characteristics 

To get an impression of this bearing model, 

some characteristics of the model will be pre- 

sented. For 2 bearing-types, a normal NSK 

6208 deep groove ball bearing and a fictitious 

angular contact NSK 6208 bearing (contact 

angle of ou = 40°) some typical results are 

shown in Figure 2. The figure gives the stiff- 

ness matrix for an increasing radial preload 

in y-direction combined with a constant ax- 

ial preload of 800 [N]. The simulations also 

show that sometimes small preload variations 

lead to large stiffness matrix component vari- 

ation. Therefore the excitations must be ac- 

curately aimed in the right direction. 



Symmetric 

- Deep groove ball bearing, NSK 6208 
-_-‘-. Fictitious angular contact bearing, NSK 6208 with CL, = 40” 

Radial preload [N] 

Figure 2: The stiffness matrix ICbrn in case of an increasing radial preload in y-direction combined with 

a constant axial preload of 800 [N] 

3. The Experimental Setup 3.1 Potential Problems 

The first experimental setup was combined 

with a Least Squares and Instrumental Vari- 
ables method to identify all bearing stiff- 

ness coefficients simultaneously from mea- 

sured transfer functions, see [a]. The results 

were unsufficiently convincing, mainly due to 

non-reproducibility of the data and still some 

non-understood differences between theory 

en practice. Whether this is due to model im- 

perfections or unknown experimental short- 

comings has not yet been found out. In this 

section an adapted experimental setup and 

identification procedure will be presented. 

In the mathematical model rollers can lose 

contact. In practice however, the presence 
of unloaded elements causes many problems. 

Sufficiently high preloads might be a solu- 

tion to this problem. Secondly, the mea- 

surements are performed on a non-rotating 
shaft. Therefore, the measured transfer func- 

tion could be dependent on the position of 

the rolling elements. 

A bearing lubricant generates a significant 

damping effect, which might complicate the 

identification problem but has a positive ef- 

fect on the problem of almost unloaded el- 

ements. When exciting the system, several 

eigenfrequencies show up not directly result- 

ing from the bearing stiffness only. These 

effects have to be suppressed or should be 



incorporated in the model. 

3.2 The Redesign 

Several options have been investigated for the 

experimental setup, such as a (rigid) shaft 

and bearing in a very stiff support, a shaft 

and bearing in a flexible support (more real- 

istic approach, both with non-rotating shaft) 

or a rigid rotor, with a fixed rotational speed 

rotating in 2 rigidly supported bearings as 

described by [6]. 

The first alternative has been chosen be- 

cause of the simplicity of the model and 

the straightforward measurement procedure. 

In Figure 3 this setup is shown schemat- 

ically. The preloads are applied by long 

strings and measured by strain gages and 

also checked by measuring the transversal 

violin-mode frequencies of the strings. The 

FRF-measurements are done by a PC-based, 

4 channel signal analysis system (DIFA) 
with export to MATLAB for further data- 

analysis. The shaft is excited by a single or a 
pair of shakers, depending on the load situa- 

tion. Both, the applied forces and the result- 

ing accelerations are measured and passed to 

the DIFA system. During a measurement us- 

ing transversal loading, the shaft will bend 

under the excitation load. When the bend- 
ing stiffness has the same order of magnitude 

as the bearing stiffness, then not only this 

bending stiffness will have to be taken into 

account but also some effective mass has to 

be dealt with instead of the total mass of the 

shaft. 

4. The Identification Process 

In this section a brief outline will be given 

of the used identification algorithms. The 

Least Squares and Instrumental Variables 

Method were investigated and augmented 

with weighting factors in [a]. The third 

method, Amplitude Fitting [5], will be dis- 

cussed and subsequently used for deriving 

new weighting factors, which will differ from 

the previous factors used in [a]. 

4.1 Identification Algorithms 

Least Squares and Instrumental Variables 

identification algorithms are capable of per- 

forming multiple-degree-of-freedom (mdof) 

fits on mechanical systems like 

M@+Bi+Kq=.f (2) 

The Least Squares algorithm minimizes the 

fit error by solving 

[&A] gis = ATE (3) 

in which A and j$ contain the model charac- 

teristics and the experimental data. & con- 

tains the unknown parameters of Equation 2. 

The Instrumental Variables algorithm min- 

imizes the difference between the measure- 

ments and the model by solving 

[VTA] & = VTE (4) 

iteratively. The matrix y contains the so- 

called instrumental variables output which 

can be considered as an estimate of the noise- 

free system. 

4.2 Amplitude Fitting 

Amplitude fitting [5] is appropriate if the 

amplitude of measured transfer functions is 

more accurate than the phase, and in essence 

it is a 1-dof fit procedure. A well separated 

peak in a transfer function can be approxi- 

mated by a single mode response of 

i + 2 RI, & jl + 02, y = Pk eiwt (5) 

in which RI, and [k are the structural fre- 

quency and damping for the particular mode 

k. Pk is the mode participation factor (recip- 

rocal the modal mass). At a given frequency 

w;, the steady state amplitude of the response 

A; is given by 

A; = 
pk pk 

d(f$ - w’)’ + (25;2k[kw;)2 = D; 

(6) 



Figure 3: The measurement set-up, only axial pre-load mechanism is shown 

which after amplitude scaling can be written 

as 

A;[A;D; - Pk] = 0 (7) 

Equation 6 will never be exact due to ampli- 

tude measurement errors, so we can write: 

AiD; - Pk = -EiDi (8) 

which indicates that the minimized error is 

Cy=r (&;Di)‘, using least squares. Equation 

7 with errors can be written as 

(A; + Ei)” Di = (A; + Ei) Pk (9) 

or 

(A: + 2EiAi + E!) D; = (A; + &i)Pk 

GO) 

Simplifying Equation 10 using Equation 8 

and neglecting the second order error terms, 

yields 

AfD; - AiPk = -&iPk (11) 

which shows that, when the problem is 

scaled, the minimized error is Cy=r (&i)2, 

Since Pk is a constant. 

5. Experimental Results 

It appeared not to be easy to estimate all the 

stiffness and damping terms for a bearing. 

This is probably caused by the fact that, in 

some FRF-components, coherences were too 

low for some frequency ranges. On the diag- 

onal, the coherences are better. The results 

of a sdof fit procedure cannot be compared 

directly to matrix elements. Therefore, the 

results will be compared to the correspond- 

ing sdof fit on the theoretical transfer func- 

tion as shown in Figure 4. For the actual sdof 

fits, the Instrumental Variables procedure is 

used. 
Experimental 

Transfer Matrix 
TheOretiCal 

Transfer Matrix 

Figure 4: Comparision of experimental SDOF 
and theoretical SDOF fit 

fit 

5.1 Stiffness and Damping Results 

For a purely axial preload the radial stiff- 

nesses in IC and y-direction should be equal. 

This also applies to the rotational stiffnesses 

about the x and y-axis. Therefore, in the- 

ory, only three eigenfrequencies evolve. The 

radial stiffness and damping results for the 
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Figure 5: Left: The measured and theoretical radial stiffness. Right: The measured radical damping 
compared with the used Rayleigh damping. (Deep groove ball bearing NSK 6208) 

deep groove ball bearing NSK 6802 are shown 

in Figure 5. The theoretical model shows the 

same trends as the experimental results but 

seems to need a multiplication to match with 

the experimental data, which could indicate 

an incorrect single roller element stiffness pa- 

rameter. Using the sdof procedure, only the 

diagonal components can be studied directly. 

The so-called coupling terms can only be 
analyzed visually by comparing the measured 

and theoretical transfer functions. 
The main goal of this research is focussed 

on the bearing stiffness rather than bearing 

damping. However, the measured transfer 

functions yield both stiffness and damping 

values. Therefore, also the damping results 

are presented. In Lim’s theory the damp- 
ing is assumed to be Rayleigh damping, (pro- 
portional to the stiffness). The given radial 

damping results show that the damping de- 
creases in case of an increasing preload; the 

Rayleigh damping appears not to be realistic. 

In [7] several damping models are discussed 

and also some experimental radial damping 
results are presented. These results also show 

a decrease in the radial damping for higher 

preloads. The results in [7] also show that 

the damping changes for a rotating shaft. 

The same procedure has been applied to a 

specific angular contact bearing, since these 

bearings exhibit a greater contact angle, see 

Figure 6. Like for the deep groove ball bear- 

ing case, all modelled stiffnesses are smaller 

than the experimentally determined data. 

The stiffness trends however, are described 

well. The differences can be caused by the 

fact that the total system behaviour is mea- 

sured and not only the bearing behaviour or 

by the difference between the static nature 
of the model and the dynamic nature of the 

measurements. Static bearing stiffness mea- 

surements can give clarification on this mat- 

ter. Unlike in the deep groove ball bearing 

case, the measured angular contact damping 

values all decrease with increasing preloads. 

Apparently, the contact angle of a bearing 

influences the amount of damping. 

5.2 Hysteresis and Reproducibility 

Applying a higher axial preload and subse- 

quently releasing the preload, shows the ef- 
fect of hysteresis in a bearing. This is shown 

in Figure 7. Apparently, there is no hys- 

teresis. The repeatedly performing of the 
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Figure 7: Measured radial stiffness, during in- 
creasing and decreasing preload. (Deep 
groove ball bearing NSK 6208) 

measurements proved that the experimen- 
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Figure 6: Left: The measured and theoretical radial stiffness. Right: The measured radial damping 
compared with the used Rayleigh damping. (Angular contact bearing RPF 7208) 

ta1 setup is capable of producing the same 

results under the same circumstances later 

on. However, the hysteresis experiment stiff- 

nesses, printed in Figure 8 together with the 

previous acquired radial stiffness results, are 

higher than the previously measured results. 

In the period between the hysteresis mea- 

surements and the actual stiffness measure- 

ments, a constant preload was applied on the 

bearing, which always kept the same posi- 

tion. From the figure the supposition can be 

drawn that the rolling elements are ‘pulled 

through’ the oil film or damaged under the 

high preload, especially because of the last 

experimental stiffness, which seems to be out 

of proportion. Performing the same measure- 

ments after creating a new oil film by rotat- 

ing the shaft manually or putting the bearing 

in another position yielded the same stiffness 

values as obtained in the hysteresis experi- 

ment. Therefore, the influence of time has 

yet to be investigated. 

5.3 Coupling Terms and Reciprocity 

The theoretical model implicitly will always 

lead to a symmetric matrix. In Figure 9 the 

deep groove ball bearing transfer functions 

H x0,, Ht+, H,,, Hzy , HAL and Hezz are 
drawn. Hz-, and Heyx show a great resem- 

blance. The other terms however have less 

similarity, which could be explained by the 

fact that the actual radial preload, i.e. the 

weight of the shaft, is low. 

0 500 1000 1500 2000 
Pre load [N] 

Figure 8: Hysteresis results compared with previ- 
ous radial stiffness results 

~~1~~1 
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Figure 9: Verification of the transfer matrix sym- 
metry. (Deep groove ball bearing NSK 
6208, axial preload = 427 [N]) 

6. Conclusions and Recom- 

mendations 

6.1 Conclusions 

l Reproducible measurements with accept- 

able coherence are possible (especially di- 



rect FRF’s). The stiffness results from the 

hysteresis experiment appeared to be higher 

than the actual stiffnesses, probably caused 

by the prolonged static preload. 

l The concept of amplitude-weighting was 

not sufficiently effective to systematically re- 

duce estimation errors. 

l The direct estimation of the entire stiffness 

matrix appeared to be unfeasible. 

l sdof fits on FRF-coupling terms can only 

be evaluated indirectly (graphically). 

l Hysteresis in the bearing stiffness can be 

ignored. 

l Experimental stiffnesses are higher than 

theoretical stiffnesses. However, the model 
is able to describe the stiffness trends. 

l The radial bearing damping tends to de- 

crease for increasing axial preload in the deep 

groove ball bearing case. In the angular con- 
tact bearing case all damping values decrease 

for increasing axial preload. 
l The experiments seem to support the 

model’s symmetry. 

6.2 Recommendations 

l Experiments with combined preloads have 

yet to be performed. 
l For the mathematical model verification 
static experiments might clearify some 

existing discrepancies, but for more realistic 
data a rotating shaft should be applied. 

l The effect long-term high preload cases 

without shaft rotation should be studied. 

This is probably related to the lubrication 

matter. 

l Research on lubrication and damping 

matters are an obvious next step in this 

project. 
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