36 research outputs found

    Control of the persistent currents in two interacting quantum rings through the Coulomb interaction and inter-ring tunneling

    Full text link
    The persistent current in two vertically coupled quantum rings containing few electrons is studied. We find that the Coulomb interaction between the rings in the absence of tunneling affects the persistent current in each ring and the ground state configurations. Quantum tunneling between the rings alters significantly the ground state and the persistent current in the system.Comment: accepted for publication in Phys. Rev.

    Artificial molecular quantum rings: Spin density functional theory calculations

    Full text link
    The ground states of artificial molecules made of two vertically coupled quantum rings are studied within the spin density functional theory for systems containing up to 13 electrons. Quantum tunneling effects on the electronic structure of the coupled rings are analyzed. For small ring radius, our results recover those of coupled quantum dots. For intermediate and large ring radius, new phases are found showing the formation of new diatomic artificial ring molecules. Our results also show that the tunneling induced phase transitions in the coupled rings occur at much smaller tunneling energy as compared to those for coupled quantum dot systems.Comment: 10 pages, 6 figure

    Entanglement versus Quantum Discord in Two Coupled Double Quantum Dots

    Full text link
    We study the dynamics of quantum correlations of two coupled double quantum dots containing two excess electrons. The dissipation is included through the contact with an oscillator bath. We solve the Redfield master equation in order to determine the dynamics of the quantum discord and the entanglement of formation. Based on our results, we find that the quantum discord is more resistant to dissipation than the entanglement of formation for such a system. We observe that this characteristic is related to whether the oscillator bath is common to both qubits or not and to the form of the interaction Hamiltonian. Moreover, our results show that the quantum discord might be finite even for higher temperatures in the asymptotic limit.Comment: 14 pages, 8 figures (new version is the final version to appear in NJP

    Purity as a witness for initial system-environment correlations in open-system dynamics

    Full text link
    We study the dynamics of a two-level atom interacting with a Lorentzian structured reservoir considering initial system-environment correlations. It is shown that under strong system-reservoir coupling the dynamics of purity can determine whether there are initial correlations between system and environment. Moreover, we investigate the interaction of two two-level atoms with the same reservoir. In this case, we show that besides determining if there are initial system-environment correlations, the dynamics of the purity of the atomic system allows the identification of the distinct correlated initial states. In addition, the dynamics of quantum and classical correlations is analyzed.Comment: 6 pages, 3 figure

    Exchange effects on electron scattering through a quantum dot embedded in a two-dimensional semiconductor structure

    Full text link
    We have developed a theoretical method to study scattering processes of an incident electron through an N-electron quantum dot (QD) embedded in a two-dimensional (2D) semiconductor. The generalized Lippmann-Schwinger equations including the electron-electron exchange interaction in this system are solved for the continuum electron by using the method of continued fractions (MCF) combined with 2D partial-wave expansion technique. The method is applied to a one-electron QD case. Cross-sections are obtained for both the singlet and triplet couplings between the incident electron and the QD electron during the scattering. The total elastic cross-sections as well as the spin-flip scattering cross-sections resulting from the exchange potential are presented. Furthermore, inelastic scattering processes are also studied using a multichannel formalism of the MCF.Comment: 11 pages, 4 figure

    Artificial molecular quantum rings under magnetic field influence

    Full text link
    The ground states of few electrons confined in two vertically coupled quantum rings in the presence of an external magnetic field are studied systematically within the current spin-density functional theory. Electron-electron interactions combined with inter-ring tunneling affects the electronic structure and the persistent current. For small values of the external magnetic field, we recover the zero magnetic field molecular quantum ring ground state configurations. Increasing the magnetic field many angular momentum, spin, and iso-spin transitions are predicted to occur in the ground state. We show that these transitions follow certain rules, which are governed by the parity of the number of electrons, the single particle picture, the Hund's rules and many-body effects.Comment: accepted for publication in Journal of Applied Physics (in press
    corecore