8,030 research outputs found

    Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity

    Get PDF
    We have theoretically studied the effect of deterministic temporal control of spontaneous emission in a dynamic optical microcavity. We propose a new paradigm in light emission: we envision an ensemble of two-level emitters in an environment where the local density of optical states is modified on a time scale shorter than the decay time. A rate equation model is developed for the excited state population of two-level emitters in a time-dependent environment in the weak coupling regime in quantum electrodynamics. As a realistic experimental system, we consider emitters in a semiconductor microcavity that is switched by free-carrier excitation. We demonstrate that a short temporal increase of the radiative decay rate depletes the excited state and drastically increases the emission intensity during the switch time. The resulting time-dependent spontaneous emission shows a distribution of photon arrival times that strongly deviates from the usual exponential decay: A deterministic burst of photons is spontaneously emitted during the switch event.Comment: 12 pages, 4 figure

    Single File Diffusion of particles with long ranged interactions: damping and finite size effects

    Full text link
    We study the Single File Diffusion (SFD) of a cyclic chain of particles that cannot cross each other, in a thermal bath, with long ranged interactions, and arbitrary damping. We present simulations that exhibit new behaviors specifically associated to systems of small number of particles and to small damping. In order to understand those results, we present an original analysis based on the decomposition of the particles motion in the normal modes of the chain. Our model explains all dynamic regimes observed in our simulations, and provides convincing estimates of the crossover times between those regimes.Comment: 30 pages, 9 figure

    Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    Get PDF
    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond. We investigate experimentally and theoretically the role of several main parameters: the material backbone and its electronic bandgap, the pump power, the quality factor, and the duration of the switch pulse. The magnitude of the shift is reduced when the backbone of the central λ\lambda-layer has a greater electronic bandgap; pumping with photon energies near the bandgap resonantly enhances the switched magnitude. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time that is set by the quality factor. We provide the settings for the essential parameters so that the frequency shift of the cavity resonance can be increased to one linewidth

    Differential ultrafast all-optical switching of the resonances of a micropillar cavity

    Get PDF
    We perform frequency- and time-resolved all-optical switching of a GaAs-AlAs micropillar cavity using an ultrafast pump-probe setup. The switching is achieved by two-photon excitation of free carriers. We track the cavity resonances in time with a high frequency resolution. The pillar modes exhibit simultaneous frequency shifts, albeit with markedly different maximum switching amplitudes and relaxation dynamics. These differences stem from the non-uniformity of the free carrier density in the micropillar, and are well understood by taking into account the spatial distribution of injected free carriers, their spatial diffusion and surface recombination at micropillar sidewalls.Comment: 4 pages, 3 figure

    Single Crystal Sapphire at milli-Kelvin Temperatures: Observation of Electromagnetically Induced Thermal Bistability in High Q-factor Whispering Gallery Modes

    Get PDF
    Resonance modes in single crystal sapphire (α\alpha-Al2_2O3_3) exhibit extremely high electrical and mechanical Q-factors (109\approx 10^9 at 4K), which are important characteristics for electromechanical experiments at the quantum limit. We report the first cooldown of a bulk sapphire sample below superfluid liquid helium temperature (1.6K) to as low as 25mK. The electromagnetic properties were characterised at microwave frequencies, and we report the first observation of electromagnetically induced thermal bistability in whispering gallery modes due to the material T3T^3 dependence on thermal conductivity and the ultra-low dielectric loss tangent. We identify "magic temperatures" between 80 to 2100 mK, the lowest ever measured, at which the onset of bistability is suppressed and the frequency-temperature dependence is annulled. These phenomena at low temperatures make sapphire suitable for quantum metrology and ultra-stable clock applications, including the possible realization of the first quantum limited sapphire clock.Comment: 5 pages, 4 figure

    A New Embedded Measurement Structure for eDRAM Capacitor

    No full text
    Submitted on behalf of EDAA (http://www.edaa.com/)International audienceThe embedded DRAM (eDRAM) is more and more used in System On Chip (SOC). The integration of the DRAM capacitor process into a logic process is challenging to get satisfactory yields. The specific process of DRAM capacitor and the low capacitance value (~30F) of this device induce problems of process monitoring and failure analysis. We propose a new test structure to measure the capacitance value of each DRAM cell capacitor in a DRAM array. This concept has been validated by simulation on a 0.18µm eDRAM technology
    corecore