124 research outputs found

    Skylab medical data evaluation program (SMEDEP)

    Get PDF
    A day-by-day summary of selected data collected during the experiment is presented. The clinical and environmental data are presented in a mission-day format along with a tabulation of biomedical measurements whose values exceed three standard deviations from the preflight measurements

    Paper Session II-B - Evolution of Biomedical Payloads to Expand Human Presence in Space

    Get PDF
    Life sciences has always been an important part of the human space program. The effects of space flight on humans were monitored from the beginning and some research was conducted in the Gemini and Apollo programs. But it was only when a space station, Skylab, was available that we were able to perform in-depth medical experiments to examine the responses of humans to space flight. Since Skylab, flight research programs have been and still are progressing toward our goals of helping astronauts live in space for long periods of time and readapt to Earth\u27s gravity as rapidly as possible, and studying the response of living systems to microgravity. The remaining Spacelab missions promise to build on the knowledge gained from previous missions to provide further understanding of physiologic changes occurring in and resulting from space flight. Investigation results and lessons learned from each of these missions will be used to influence future space shuttle missions and Space Station Freedom

    Use of telescience for biomedical research during space flight

    Get PDF
    When the U.S. first embarked on a manned space flight program, NASA's use of medical telescience was focused on crew health monitoring. In recent years, medical telescience use has been expanded to include support of basic research in space medicine. It enables ground support personnel to assist on-board crews in the performance of experiments and improves the quality and quantity of data return. NASA is continuing to develop its telescience capabilities. Future plans include telemedicine that will enable physicians on Earth to support crewmembers during flight and telescience that will enable investigators at their home institutions to support and conduct in-flight medical research. NASA's use of telescience for crew safety and biomedical research from Project Mercury to the present is described and NASA's plans for the future are presented

    Active Integrated Filters for RF-Photonic Channelizers

    Get PDF
    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain

    Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target.

    Get PDF
    A major rate-limiting step in developing more effective immunotherapies for GBM is our inadequate understanding of the cellular complexity and the molecular heterogeneity of immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human glioma, immune, and other stromal cells at the single cell level. In doing so, we discover extensive spatial and molecular heterogeneity in immune infiltrates. We identify molecular signatures for nine distinct myeloid cell subtypes, of which five are independent prognostic indicators of glioma patient survival. Furthermore, we identify S100A4 as a regulator of immune suppressive T and myeloid cells in GBM and demonstrate that deleting S100a4 in non-cancer cells is sufficient to reprogram the immune landscape and significantly improve survival. This study provides insights into spatial, molecular, and functional heterogeneity of glioma and glioma-associated immune cells and demonstrates the utility of this dataset for discovering therapeutic targets for this poorly immunogenic cancer

    Complications and pitfalls of lumbar interlaminar and transforaminal epidural injections

    Get PDF
    Lumbar interlaminar and transforaminal epidural injections are used in the treatment of lumbar radicular pain and other lumbar spinal pain syndromes. Complications from these procedures arise from needle placement and the administration of medication. Potential risks include infection, hematoma, intravascular injection of medication, direct nerve trauma, subdural injection of medication, air embolism, disc entry, urinary retention, radiation exposure, and hypersensitivity reactions. The objective of this article is to review the complications of lumbar interlaminar and transforaminal epidural injections and discuss the potential pitfalls related to these procedures. We performed a comprehensive literature review through a Medline search for relevant case reports, clinical trials, and review articles. Complications from lumbar epidural injections are extremely rare. Most if not all complications can be avoided by careful technique with accurate needle placement, sterile precautions, and a thorough understanding of the relevant anatomy and contrast patterns on fluoroscopic imaging

    Checkpoint Signaling, Base Excision Repair, and PARP Promote Survival of Colon Cancer Cells Treated with 5-Fluorodeoxyuridine but Not 5-Fluorouracil

    Get PDF
    The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor
    corecore