422 research outputs found
Igusa's p-adic local zeta function associated to a polynomial mapping and a polynomial integration measure
For p prime, we give an explicit formula for Igusa's local zeta function
associated to a polynomial mapping f=(f_1,...,f_t): Q_p^n -> Q_p^t, with
f_1,...,f_t in Z_p[x_1,...,x_n], and an integration measure on Z_p^n of the
form |g(x)||dx|, with g another polynomial in Z_p[x_1,...,x_n]. We treat the
special cases of a single polynomial and a monomial ideal separately. The
formula is in terms of Newton polyhedra and will be valid for f and g
sufficiently non-degenerated over F_p with respect to their Newton polyhedra.
The formula is based on, and is a generalization of results of Denef -
Hoornaert, Howald et al., and Veys - Zuniga-Galindo.Comment: 20 pages, 5 figures, 2 table
Superconductivity drives magnetism in delta-doped La2CuO4
The understanding of the interplay between different orders in a solid is a
key challenge in highly correlated electronic systems. In real systems this is
even more difficult since disorder can have a strong influence on the subtle
balance between these orders and thus can obscure the interpretation of the
observed physical properties. Here we present a study on delta-doped La2CuO4
superlattices. By means of molecular beam epitaxy whole LaO-layers were
periodically replaced through SrO-layers providing a charge reservoir, yet
reducing the level of disorder typically present in doped cuprates to an
absolute minimum. The induced superconductivity and its interplay with the
antiferromagnetic order is studied by means of low-energy muSR. We find a
quasi-2D superconducting state which couples to the antiferromagnetic order in
a non-trivial way. Below the superconducting transition temperature, the
magnetic volume fraction increases strongly. The reason could be a charge
redistribution of the free carriers due to the opening of the superconducting
gap which is possible due to the close proximity and low disorder between the
different ordered regions.Comment: 4 figure
Quasiparticle interference patterns as a test for the nature of the pseudogap phase in the cuprate superconductors
Electrons, when scattered by static random disorder, form standing waves that
can be imaged using scanning tunneling microscopy. Such interference patterns,
observable by the recently developed technique of Fourier transform scanning
tunneling spectroscopy (FT-STS), are shown to carry unique fingerprints
characteristic of the electronic order present in a material. We exploit this
feature of the FT-STS technique to propose a test for the nature of the
enigmatic pseudogap phase in the high- cuprate superconductors. Through
their sensitivity to the quasiparticle spectra and coherence factors, the
FT-STS patterns in principle carry enough information to unambiguously
determine the nature of the condensate responsible for the pseudogap
phenomenon. We argue that the next generation of FT-STS experiments, currently
underway, should be able to distinguish between the pseudogap dominated by the
remnants of superconducting order from the pseudogap dominated by some
competing order in the particle-hole channel. Using general arguments and
detailed numerical calculations, we point to certain fundamental differences
between the two scenarios and discuss the prospects for future experiments.Comment: 15 pages REVTeX + 9 ps figures. For related work and info visit
http://www.physics.ubc.ca/~franz; version 2 to appear in IJMP
Quasiparticle scattering and local density of states in the d-density wave phase
We study the effects of single-impurity scattering on the local density of
states in the high- cuprates. We compare the quasiparticle interference
patterns in three different ordered states: d-wave superconductor (DSC),
d-density wave (DDW), and coexisting DSC and DDW (DSC-DDW). In the coexisting
state, at energies below the DSC gap, the patterns are almost identical to
those in the pure DSC state with the same DSC gap. However, they are
significantly different for energies greater than or equal to the DSC gap. This
transition at an energy around the DSC gap can be used to test the nature of
the superconducting state of the underdoped cuprates by scanning tunneling
microscopy. Furthermore, we note that in the DDW state the effect of the
coherence factors is stronger than in the DSC state. The new features arising
due to DDW ordering are discussed.Comment: 6 page, 5 figures (Higher resolution figures are available by
request
Muon-Spin Rotation and Magnetization Studies of Chemical and Hydrostatic Pressure Effects in EuFe2(As1− x P x )2
The magnetic phase diagram of EuFe2(As1−x P x )2 was investigated by means of magnetization and muon-spin rotation (μSR) studies as a function of chemical (isovalent substitution of As by P) and hydrostatic pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe spins with respect to P content and hydrostatic pressure are determined and discussed. The present investigations reveal that the magnetic coupling between the Eu and the Fe sublattices strongly depends on chemical and hydrostatic pressure. It is found that chemical and hydrostatic pressures have a similar effect on the Eu and Fe magnetic orde
The types of Mott insulator
There are two classes of Mott insulators in nature, distinguished by their
responses to weak doping. With increasing chemical potential, Type I Mott
insulators undergo a first order phase transition from the undoped to the doped
phase. In the presence of long-range Coulomb interactions, this leads to an
inhomogeneous state exhibiting ``micro-phase separation.'' In contrast, in Type
II Mott insulators charges go in continuously above a critical chemical
potential. We show that if the insulating state has a broken symmetry, this
increases the likelihood that it will be Type I. There exists a close analogy
between these two types of Mott insulators and the familiar Type I and Type II
superconductors
Upper critical field calculations for the high critical temperature superconductors considering inhomogeneities
We perform calculations to obtain the curve of high temperature
superconductors (HTSC). We consider explicitly the fact that the HTSC possess
intrinsic inhomogeneities by taking into account a non uniform charge density
. The transition to a coherent superconducting phase at a critical
temperature corresponds to a percolation threshold among different
superconducting regions, each one characterized by a given .
Within this model we calculate the upper critical field by means of an
average linearized Ginzburg-Landau (GL) equation to take into account the
distribution of local superconducting temperatures . This
approach explains some of the anomalies associated with and why
several properties like the Meissner and Nernst effects are detected at
temperatures much higher than .Comment: Latex text, add reference
Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}
Experimental evidence on high-Tc cuprates reveals ubiquitous charge density
wave (CDW) modulations, which coexist with superconductivity. Although the CDW
had been predicted by theory, important questions remain about the extent to
which the CDW influences lattice and charge degrees of freedom and its
characteristics as functions of doping and temperature. These questions are
intimately connected to the origin of the CDW and its relation to the
mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant
inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped
Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive
excitations from an incommensurate CDW that induces anomalously enhanced phonon
intensity, unseen using other techniques. Near the pseudogap temperature T*,
the CDW persists, but the associated excitations significantly weaken and the
CDW wavevector shifts, becoming nearly commensurate with a periodicity of four
lattice constants. The dispersive CDW excitations, phonon anomaly, and
temperature dependent commensuration provide a comprehensive momentum space
picture of complex CDW behavior and point to a closer relationship with the
pseudogap state
Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2
High-transition-temperature (high-Tc) superconductivity is ubiquitous in the
cuprates containing CuO2 planes but each cuprate has its own character. The
study of the material dependence of the d-wave superconducting gap (SG) should
provide important insights into the mechanism of high-Tc. However, because of
the 'pseudogap' phenomenon, it is often unclear whether the energy gaps
observed by spectroscopic techniques really represent the SG. Here, we report
spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of
nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They
enable us to observe the quasi-particle interference (QPI) effect in this
material, through which unambiguous new information on the SG is obtained. The
analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is
almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level,
while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG
in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This
explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig
Inhomogeneous d-wave superconducting state of a doped Mott insulator
Recent scanning tunneling microscope (STM) measurements discovered remarkable
electronic inhomogeneity, i.e. nano-scale spatial variations of the local
density of states (LDOS) and the superconducting energy gap, in the high-Tc
superconductor BSCCO. Based on the experimental findings we conjectured that
the inhomogeneity arises from variations in local oxygen doping level and may
be generic of doped Mott insulators which behave rather unconventionally in
screening the dopant ionic potentials at atomic scales comparable to the short
coherence length. Here, we provide theoretical support for this picture. We
study a doped Mott insulator within a generalized t-J model, where doping is
accompanied by ionic Coulomb potentials centered in the BiO plane. We calculate
the LDOS spectrum, the integrated LDOS, and the local superconducting gap, make
detailed comparisons to experiments, and find remarkable agreement with the
experimental data. We emphasize the unconventional screening in a doped Mott
insulator and show that nonlinear screening dominates at nano-meter scales
which is the origin of the electronic inhomogeneity. It leads to strong
inhomogeneous redistribution of the local hole density and promotes the notion
of a local doping concentration. We find that the inhomogeneity structure
manifests itself at all energy scales in the STM tunneling differential
conductance, and elucidate the similarity and the differences between the data
obtained in the constant tunneling current mode and the same data normalized to
reflect constant tip-to-sample distance. We also discuss the underdoped case
where nonlinear screening of the ionic potential turns the spatial electronic
structure into a percolative mixture of patches with smaller pairing gaps
embedded in a background with larger gaps to single particle excitations.Comment: 19 pages, final versio
- …
