14 research outputs found

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society

    Cloning and sequence analysis of a cDNA encoding the <i>α</i>-subunit of mouse <i>β</i>-<i>N</i>-acetylhexosaminidase and comparison with the human enzyme

    Full text link
    cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5′ end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse.</jats:p

    Monitoring intracellular oxygen concentration: Implications for hypoxia studies and real-time oxygen monitoring

    Get PDF
    The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time

    Fragile: Please handle with care

    No full text
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.This patient and public involvement was funded by a University of Exeter Innovation, Impact and Business collaboration grant, with support from the NIHR Collaboration for Leadership in Applied Health Research and Care South West Peninsula, University of Exeter Medical School and College of Engineering, Mathematics and Physical Sciences, Sheffield Hallam University and the NIHR Devices for Dignity MedTech Co-operative. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care

    Genome-wide association study identifies novel susceptibility loci for <em>KIT</em> D816V positive mastocytosis.

    Get PDF
    Mastocytosis is a rare myeloid neoplasm characterized by uncontrolled expansion of mast cells, driven in &gt;80% of affected individuals by acquisition of the KIT D816V mutation. To explore the hypothesis that inherited variation predisposes to mastocytosis, we performed a two-stage genome-wide association study, analyzing 1,035 individuals with KIT D816V positive disease and 17,960 healthy control individuals from five European populations. After quality control, we tested 592,007 SNPs at stage 1 and 75 SNPs at stage 2 for association by using logistic regression and performed a fixed effects meta-analysis to combine evidence across the two stages. From the meta-analysis, we identified three intergenic SNPs associated with mastocytosis that achieved genome-wide significance without heterogeneity between cohorts: rs4616402 (pmeta = 1.37 × 10−15, OR = 1.52), rs4662380 (pmeta = 2.11 × 10−12, OR = 1.46), and rs13077541 (pmeta = 2.10 × 10−9, OR = 1.33). Expression quantitative trait analyses demonstrated that rs4616402 is associated with the expression of CEBPA (peQTL = 2.3 × 10−14), a gene encoding a transcription factor known to play a critical role in myelopoiesis. The role of the other two SNPs is less clear: rs4662380 is associated with expression of the long non-coding RNA gene TEX41 (peQTL = 2.55 × 10−11), whereas rs13077541 is associated with the expression of TBL1XR1, which encodes transducin (β)-like 1 X-linked receptor 1 (peQTL = 5.70 × 10−8). In individuals with available data and non-advanced disease, rs4616402 was associated with age at presentation (p = 0.009; beta = 4.41; n = 422). Additional focused analysis identified suggestive associations between mastocytosis and genetic variation at TERT, TPSAB1/TPSB2, and IL13. These findings demonstrate that multiple germline variants predispose to KIT D816V positive mastocytosis and provide novel avenues for functional investigation

    PHENIX muon arms

    No full text

    Death following pulmonary complications of surgery before and during the SARS-CoV-2 pandemic

    No full text
    Abstract Background This study aimed to determine the impact of pulmonary complications on death after surgery both before and during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Methods This was a patient-level, comparative analysis of two, international prospective cohort studies: one before the pandemic (January–October 2019) and the second during the SARS-CoV-2 pandemic (local emergence of COVID-19 up to 19 April 2020). Both included patients undergoing elective resection of an intra-abdominal cancer with curative intent across five surgical oncology disciplines. Patient selection and rates of 30-day postoperative pulmonary complications were compared. The primary outcome was 30-day postoperative mortality. Mediation analysis using a natural-effects model was used to estimate the proportion of deaths during the pandemic attributable to SARS-CoV-2 infection. Results This study included 7402 patients from 50 countries; 3031 (40.9 per cent) underwent surgery before and 4371 (59.1 per cent) during the pandemic. Overall, 4.3 per cent (187 of 4371) developed postoperative SARS-CoV-2 in the pandemic cohort. The pulmonary complication rate was similar (7.1 per cent (216 of 3031) versus 6.3 per cent (274 of 4371); P = 0.158) but the mortality rate was significantly higher (0.7 per cent (20 of 3031) versus 2.0 per cent (87 of 4371); P &amp;lt; 0.001) among patients who had surgery during the pandemic. The adjusted odds of death were higher during than before the pandemic (odds ratio (OR) 2.72, 95 per cent c.i. 1.58 to 4.67; P &amp;lt; 0.001). In mediation analysis, 54.8 per cent of excess postoperative deaths during the pandemic were estimated to be attributable to SARS-CoV-2 (OR 1.73, 1.40 to 2.13; P &amp;lt; 0.001). Conclusion Although providers may have selected patients with a lower risk profile for surgery during the pandemic, this did not mitigate the likelihood of death through SARS-CoV-2 infection. Care providers must act urgently to protect surgical patients from SARS-CoV-2 infection. </jats:sec
    corecore