109,808 research outputs found

    Boundary Layer Stability and Laminar-Turbulent Transition Analysis with Thermochemical Nonequilibrium Applied to Martian Atmospheric Entry

    Get PDF
    As Martian atmospheric entry vehicles increase in size to accommodate larger payloads, transitional ow may need to be taken into account in the design of the heat shield in order to reduce heat shield mass. The mass of the Thermal Protection System (TPS) comprises a significant portion of the vehicle mass, and a reduction of this mass would result in fuel savings. The current techniques used to design entry shields generally assume fully turbulent flow when the vehicle is large enough to expect transitional flow, and while this worst-case scenario provides a greater factor of safety it may also result in overdesigned TPS and unnecessarily high vehicle mass. Greater accuracy in the prediction of transition would also reduce uncertainty in the thermal and aerodynamic loads. Stability analysis, using e(sup N) -based methods including Linear Stability Theory (LST) and the Parabolized Stability Equations (PSE), offers a physics-based method of transition prediction that has been thoroughly studied and applied in perfect gas flows, and to a more limited extent in reacting and nonequilibrium flows. These methods predict the amplification of a known disturbance frequency and allow identification of the most unstable frequency. Transition is predicted to occur at a critical amplification or N Factor, frequently determined through experiment and empirical correlations. The LAngley Stability and TRansition Analysis Code (LASTRAC), with modifications for thermochemically reacting flows and arbitrary gas mixtures, will be presented with LST results on a simulation of a high enthalpy CO2 gas wind tunnel test relevant to Martian atmospheric entry. The results indicate transition caused by modified Tollmien-Schlichting waves on the leeward side, which are predicted to be more stable and cause transition slightly downstream when thermochemical nonequilibrium is included in the stability analysis for the same mean flow solution

    Multiple Boundary Layer Instability Modes with Nonequilibrium and Wall Temperature Effects Using LASTRAC

    Get PDF
    Prediction and control of boundary layer transition from laminar to turbulent is important to many flow regimes and vehicle designs, including vehicles operating at hypersonic conditions where nonequilibrium effects may be encountered. Wall cooling is known to affect the instability characteristics of the boundary layer and subsequently the transition location. Design considerations, including material failure and fuel chemistry, require the use of actively cooled walls in hypersonic vehicles, further motivating the study of wall temperature effects on top of the considerations of reducing heat flux, drag, and uncertainty. In this work, we analyze the stability of a boundary layer with chemical and thermal nonequilibrium on a Mach 20, 6 wedge. We investigate the effects of wall temperature on multiple unstable modes individually and on the integrated growth of disturbances along the surface. We use the LAngley Stability and TRansition Analysis Code (LASTRAC) to evaluate boundary layer stability, using capabilities implemented by the authors. Included are results that address chemical nonequilibrium with both thermal equilibrium and nonequilibrium

    Exposing the dressed quark's mass

    Full text link
    This snapshot of recent progress in hadron physics made in connection with QCD's Dyson-Schwinger equations includes: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a pre'cis on the physics of in-hadron condensates; results on the hadron spectrum, including dressed-quark-core masses for the nucleon and Delta, their first radial excitations, and the parity-partners of these states; an illustration of the impact of DCSB on the electromagnetic pion form factor, thereby exemplifying how data can be used to chart the momentum-dependence of the dressed-quark mass function; and a prediction that F_1^{p,d}/F_1^{p,u} passes through zero at Q^2\approx 5m_N^2 owing to the presence of nonpointlike scalar and axial-vector diquark correlations in the nucleon.Comment: 10 pages, 4 figures, 2 tables. Contribution to the Proceedings of the 4th Workshop on Exclusive Reactions at High Momentum Transfer, Thomas Jefferson National Accelerator Facility Newport News, Virginia, 18-21 May 201

    Computer model of catalytic combustion/Stirling engine heater head

    Get PDF
    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers

    Impact of dynamical chiral symmetry breaking on meson structure and interactions

    Get PDF
    We provide a glimpse of recent progress in meson physics made via QCD's Dyson-Schwinger equations with: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a pre'cis on the physics of in-hadron condensates; results for the masses of the \pi, \sigma, \rho, a_1 mesons and their first-radial excitations; and an illustration of the impact of DCSB on the pion form factor.Comment: 6 pages, 3 figures, 1 table. Contribution to Proceedings of the 11th International Workshop on Meson Production, Properties and Interaction, Uniwersytet Jagiellonski, Instytut Fizyki, Krakow, Poland, 10-15 June 201

    The BcB_c Decays to PP-wave Charmonium by Improved Bethe-Salpeter Approach

    Full text link
    We re-calculate the exclusive semileptonic and nonleptonic decays of BcB_c meson to a PP-wave charmonium in terms of the improved Bethe-Salpeter (B-S) approach, which is developed recently. Here the widths for the exclusive semileptonic and nonleptonic decays, the form factors, and the charged lepton spectrums for the semileptonic decays are precisely calculated. To test the concerned approach by comparing with experimental measurements when the experimental data are available, and to have comparisons with the other approaches the results obtained by the approach and those by some approaches else as well as the original B-S approach, which appeared in literature, are comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table

    On a class of reductions of Manakov-Santini hierarchy connected with the interpolating system

    Full text link
    Using Lax-Sato formulation of Manakov-Santini hierarchy, we introduce a class of reductions, such that zero order reduction of this class corresponds to dKP hierarchy, and the first order reduction gives the hierarchy associated with the interpolating system introduced by Dunajski. We present Lax-Sato form of reduced hierarchy for the interpolating system and also for the reduction of arbitrary order. Similar to dKP hierarchy, Lax-Sato equations for LL (Lax fuction) due to the reduction split from Lax-Sato equations for MM (Orlov function), and the reduced hierarchy for arbitrary order of reduction is defined by Lax-Sato equations for LL only. Characterization of the class of reductions in terms of the dressing data is given. We also consider a waterbag reduction of the interpolating system hierarchy, which defines (1+1)-dimensional systems of hydrodynamic type.Comment: 15 pages, revised and extended, characterization of the class of reductions in terms of the dressing data is give

    Cavity QED with atomic mirrors

    Get PDF
    A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists of trapping cold atoms near tapered nanofibers. Here, we describe a novel technique to achieve strong, coherent coupling between a single atom and photon in such a system. Our approach makes use of collective enhancement effects, which allow a lattice of atoms to form a high-finesse cavity within the fiber. We show that a specially designated "impurity" atom within the cavity can experience strongly enhanced interactions with single photons in the fiber. Under realistic conditions, a "strong coupling" regime can be reached, wherein it becomes feasible to observe vacuum Rabi oscillations between the excited impurity atom and a single cavity quantum. This technique can form the basis for a scalable quantum information network using atom-nanofiber systems.Comment: 20 pages, 4 figure

    Quantum tunneling through planar p-n junctions in HgTe quantum wells

    Full text link
    We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band-structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction. The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong Rashba spin-orbit interaction.Comment: 4 pages, 4 figure

    An analytical and experimental comparison of the flow field of an advanced swept turboprop

    Get PDF
    An argon ion laser velocimeter with four beams was used to measure the detailed flow-field of an advanced eight blade propeller with 45% of tip sweep in an 8x6 foot supersonic wind tunnel. Data were obtained at a free stream Mach number of 0.8, the design advance ratio of 3.06 and a power coefficient of 1.8. Data are presented for inlet flow, exit flow, flow within the blades and flow slightly outside the blade tips. The data are compared to a lifting line theory. In general, the results of the comparison are considered favorable
    corecore