21 research outputs found

    No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community – A Field Study

    Get PDF
    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community

    Theory for the FCC-ee : Report on the 11th FCC-ee Workshop

    Get PDF
    The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of magnitude advances in terms of Precision, Sensitivity and Energy. The implementation plan foresees, as a first step, an Electroweak Factory electron-positron collider. This high luminosity facility, operating between 90 and 365 GeV centre-of-mass energy, will study the heavy particles of the Standard Model, Z, W, Higgs, and top with unprecedented accuracy. The Electroweak Factory e+e−e^+e^- collider constitutes a real challenge to the theory and to precision calculations, triggering the need for the development of new mathematical methods and software tools. A first workshop in 2018 had focused on the first FCC-ee stage, the Tera-Z, and confronted the theoretical status of precision Standard Model calculations on the Z-boson resonance to the experimental demands. The second workshop in January 2019, which is reported here, extended the scope to the next stages, with the production of W-bosons (FCC-ee-W), the Higgs boson (FCC-ee-H) and top quarks (FCC-ee-tt). In particular, the theoretical precision in the determination of the crucial input parameters, alpha_QED, alpha_QCD, M_W, m_t at the level of FCC-ee requirements is thoroughly discussed. The requirements on Standard Model theory calculations were spelled out, so as to meet the demanding accuracy of the FCC-ee experimental potential. The discussion of innovative methods and tools for multi-loop calculations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were discussed, in particular the effective theory approaches. The reports of 2018 and 2019 serve as white papers of the workshop results and subsequent developments

    Re-emergence of enterovirus D68 in Europe after easing the COVID-19 lockdown, September 2021

    Get PDF
    We report a rapid increase in enterovirus D68 (EV-D68) infections, with 139 cases reported from eight European countries between 31 July and 14 October 2021. This upsurge is in line with the seasonality of EV-D68 and was presumably stimulated by the widespread reopening after COVID-19 lockdown. Most cases were identified in September, but more are to be expected in the coming months. Reinforcement of clinical awareness, diagnostic capacities and surveillance of EV-D68 is urgently needed in Europe

    Effects of six hours daily lower body negative pressure on orthostatic tolerance and cardiac performance during 30 days strict head-down tilt bedrest

    No full text
    Introduction: Orthostatic intolerance commonly occurs in astronauts returning to earth. Head-down tilt bedrest (HDTBR), which models cardiovascular adaptation to weightlessness, decreases orthostatic tolerance by 34–60% without any countermeasure. We hypothesized that daily six hours lower-body-negative-pressure (LBNP, - 25 mmHg) ameliorates orthostatic tolerance, plasma volume, and cardiovascular deconditioning during HDTBR. Methods: We submitted 23 healthy persons (12 women, 34.5 ± 9 years, 23.9 ± 2.8 kg/m²) to 30 days of strict HDTBR (SANS-CM study). Subjects were assigned to 6 h upright seating (positive control, n = 11) or - 25 mmHg LBNP (n = 12) per day. We measured left ventricular outflow tract diameter (LVOT) and LVOT-stroke volume by pulsed wave doppler echocardiography during 15 min of 80 head-up tilt testing (HUT) with incremental LBNP until presyncope before and after HDTBR. We determined plasma volume with CO-rebreathing two days before and at HDTBR day 27. Results: With HDTBR, orthostatic tolerance decreased 289 ± 89 s (- 23%) in the seated and 284 ± 95 s (- 22%) in the LBNP group (p\ 0.001 vs. baseline, p = 0.968 between groups). Plasma volume decreased 569 ± 114 ml in the seated and 604 ± 104 ml in the LBNP group (p\0.001 vs. baseline, p = 0.813 between groups). While supine stroke volume decreased 8 ± 1 ml in the seated and 9 ± 4 ml in the LBNP group (p\0.001 vs. baseline, p = 0.874 between groups), supine cardiac output did not change in either group. Both groups showed similar reductions in upright stroke volume following HDTBR, however, stroke volume at presyncope did not change with HDTBR. Conclusions: Six hours daily moderate intensity LBNP or seating did not fully attenuate orthostatic intolerance, plasma volume loss, or cardiovascular deconditioning during 30 days HDTBR. However, both interventions better maintained orthostatic tolerance compared with previous 30–60 days HDTBR studies without countermeasures

    A novel real-time magnetic resonance imaging approach to study orthostatic intolerance mechanisms in patients with hypermobile Ehlers-Danlos syndrome

    No full text
    Background: Patients diagnosed with the hypermobile Ehlers-Danlos syndrome often experience orthostatic intolerance, particularly the postural tachycardia syndrome (POTS). To discern hemodynamic mechanisms limiting orthostatic tolerance in these patients, we applied a novel approach combining real-time magnetic resonance imaging (MRI), physiological monitoring, and orthostatic testing through lower body negative pressure (LBNP). Materials and Methods: We recruited 9 women with hypermobile Ehlers-Danlos syndrome and POTS (33 ± 7 years; 22.5 ± 4.8 kg/ m²) and 5 matched healthy controls (35 ± 10 years; 23.8 ± 3 kg/ m²). One patient with pure autonomic failure (PAF) served as positive control. We performed real-time cardiac MRI without and during - 30 mmHg LBNP with 33 ms temporal resolution to measure stroke volume in the ascending aorta and venous flow in the inferior vena cava. We recorded brachial blood pressure, beat-to-beat finger arterial blood pressure, ECG, and respiration. Results: LBNP increased heart rate by 24.7 ± 10.9 bpm in patients and by 8.2 ± 6.7 bpm in control persons (p \0.01). Blood pressure did not change significantly in either group. Cardiac stroke volume decreased 24.3 ± 6.6 ml in patients and 19.7 ± 7.2 ml in control persons (p = 0.079). However, cardiac output responded similarly in both groups. With LBNP, inferior vena cava flow decreased 688 ± 25 ml/min (n = 4) in patients and 510 ± 42 ml/min in control persons. Middle cerebral artery blood flow remained unchanged during LBNP, only the right side showed a reduced peak velocity (p = 0.027). In the patient with PAF, blood pressure decreased from 118/74 to 58/35 mmHg with LBNP, heart rate remained unchanged, stroke volume decreased 45%, and middle cerebral artery blood flow decreased 0.06 ± 0.01 l/min during LBNP. Conclusion: Combination of cardiac real-time MRI and LBNP is a feasible approach to study hemodynamic mechanisms contributing to orthostatic intolerance in patients. The unobtrusive nature of the test, which does not require breath-holding or ECG triggering, and the ability to measure absolute vascular flow are distinct advanta
    corecore