1,714 research outputs found

    The plasmonic eigenvalue problem

    Full text link
    A plasmon of a bounded domain Ω⊂Rn\Omega\subset\mathbb{R}^n is a non-trivial bounded harmonic function on Rn∖∂Ω\mathbb{R}^n\setminus\partial\Omega which is continuous at ∂Ω\partial\Omega and whose exterior and interior normal derivatives at ∂Ω\partial\Omega have a constant ratio. We call this ratio a plasmonic eigenvalue of Ω\Omega. Plasmons arise in the description of electromagnetic waves hitting a metallic particle Ω\Omega. We investigate these eigenvalues and prove that they form a sequence of numbers converging to one. Also, we prove regularity of plasmons, derive a variational characterization, and prove a second order perturbation formula. The problem can be reformulated in terms of Dirichlet-Neumann operators, and as a side result we derive a formula for the shape derivative of these operators.Comment: 22 pages; replacement 8-March-14: minor corrections; to appear in Review in Mathematical Physic

    Perturbation theory for plasmonic eigenvalues

    Full text link
    We develop a perturbative approach for calculating, within the quasistatic approximation, the shift of surface resonances in response to a deformation of a dielectric volume. Our strategy is based on the conversion of the homogeneous system for the potential which determines the plasmonic eigenvalues into an inhomogeneous system for the potential's derivative with respect to the deformation strength, and on the exploitation of the corresponding compatibility condition. The resulting general expression for the first-order shift is verified for two explicitly solvable cases, and for a realistic example of a deformed nanosphere. It can be used for scanning the huge parameter space of possible shape fluctuations with only quite small computational effort

    Ion-lithium collision dynamics studied with an in-ring MOTReMi

    Get PDF
    We present a novel experimental tool allowing for kinematically complete studies of break-up processes of laser-cooled atoms. This apparatus, the 'MOTReMi', is a combination of a magneto-optical trap (MOT) and a Reaction Microscope (ReMi). Operated in an ion-storage ring, the new setup enables to study the dynamics in swift ion-atom collisions on an unprecedented level of precision and detail. In first experiments on collisions with 1.5 MeV/amu O8+^{8+}-Li the pure ionization of the valence electron as well as ionization-excitation of the lithium target has been investigated

    Tests of relativity using a microwave resonator

    Get PDF
    The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are compared to set new constraints on a possible violation of Lorentz invariance. We determine the variation of the oscillator frequency as a function of its orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike test) with respect to a preferred frame candidate. We constrain the corresponding parameters of the Mansouri and Sexl test theory to ή−ÎČ+1/2=(1.5±4.2)×10−9\delta - \beta + 1/2 = (1.5\pm 4.2) \times 10^{-9} and ÎČ−α−1=(−3.1±6.9)×10−7\beta - \alpha - 1 = (-3.1\pm 6.9) \times 10^{-7} which is equivalent to the best previous result for the former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3, 2002

    Cooling of Molecular Ion Beams

    No full text
    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal exciation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

    A general approximation of quantum graph vertex couplings by scaled Schroedinger operators on thin branched manifolds

    Full text link
    We demonstrate that any self-adjoint coupling in a quantum graph vertex can be approximated by a family of magnetic Schroedinger operators on a tubular network built over the graph. If such a manifold has a boundary, Neumann conditions are imposed at it. The procedure involves a local change of graph topology in the vicinity of the vertex; the approximation scheme constructed on the graph is subsequently `lifted' to the manifold. For the corresponding operator a norm-resolvent convergence is proved, with the natural identification map, as the tube diameters tend to zero.Comment: 19 pages, one figure; introduction amended and some references added, to appear in CM

    Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring

    Full text link
    Photodetachment thermometry on a beam of OH−^- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional, frequency and time dependent photodetachment spectroscopy over 20 minutes of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J = 1 natural lifetime (about 193 s) and determine the OH−^- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX supplement with 12 pages, 3 figures and 3 tables. This article has been accepted by Physical Review Letter

    The acceleration and storage of radioactive ions for a neutrino factory

    Full text link
    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200

    Dielectronic Recombination of Ground-State and Metastable Li+ Ions

    Get PDF
    Dielectronic recombination has been investigated for Delta-n = 1 resonances of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s ^3S). The ground-state spectrum shows three prominent transitions between 53 and 64 eV, while the metastable spectrum exhibits many transitions with energies < 3.2 eV. Reasonably good agreement of R-matrix, LS coupling calculations with the measured recombination rate coefficient is obtained. The time dependence of the recombination rate yields a radiative lifetime of 52.2 +- 5.0 s for the 2 ^3S level of Li+.Comment: Submitted to Phys. Rev. A; REVTeX, 4 pages, 3 figure
    • 

    corecore