762 research outputs found

    Groundwater monitoring network design using minimum well density

    Get PDF
    Limitations on resources for groundwater quality monitoring projects demand definition of groundwater contaminant plumes with a minimum number of sampling wells. Placement of these wells, especially in the case of a sequential design, in which wells are added in increments, requires effective use of the information gathered from the wells. The relationship between loss of information (or plume definition error) and degree of reduction in the number of sampling wells was investigated. Subsequently, a sequential network design procedure was developed and then tested with data from two historic tracer tests. The procedure was used to construct networks of varying number of wells to investigate the relationship between average plume quantification error and number of wells. In the first phase, a proprietary sampling design product (E4) was used to select variably sized subsets of sampling wells from two existing natural gradient tracer tests. The tracer plume defined by data from each subset of wells was compared to the plume defined by data from the full set of wells. Differences between each subset plume and its corresponding full set plume were quantified and used to generate a function relating degree of error to sampling density and time since tracer introduction. Combined analysis of three sampling events from one tracer test and two from another revealed that the number of wells used for four of the events could have been reduced with minimal loss in contaminant plume definition. The second phase of this research consisted of the formulation of a sequential network design procedure that used only information obtained from well sampling to predict plume direction and spread. Tracer test data were used to test the procedure . Networks were constructed in increments, and appended areas were located according to the estimated plume transport parameters and assumed management factors. E4 was used to site wells within the prescribed areas. Network designs were evaluated by a plot of average plume definition error versus total number of wells in the network. Results indicated that the number of wells in the original tracer tests could have been reduced without significant loss of plume information when using the sequential design procedure and E4, even though less information was used at the beginning of the design than used in designing the original tracer test networks. This suggests that the sequential design procedure described herein, used in conjunction with E4, could provide substantial benefit if applied in the design of groundwater monitoring well networks

    Search for corannulene (C20H10) in the Red Rectangle

    Get PDF
    Polycyclic Aromatic Hydrocarbons (PAHs) are widely accepted as the carriers of the Aromatic Infrared Bands (AIBs), but an unambiguous identification of any specific interstellar PAH is still missing. For polar PAHs, pure rotational transitions can be used as spectral fingerprints for identification. Combining dedicated experiments, detailed simulations and observations, we explore d the mm wavelength domain to search for specific rotational transitions of corannulene (C20H10). We performed high-resolution spectroscopic measurements and a simulation of the emission spectrum of ultraviolet-excited C20H10 in the environment of the Red Rectangle (RR), calculating its synthetic rotational spectrum. Based on these results, we conducted a first observational campaign at the IRAM 30-m telescope towards this source to search for several high-J rotational transitions of C20H10. The laboratory detection of the J = 112 ← 111 transition of corannulene showed that no centrifugal splitting is present up to this line. Observations with the IRAM 30-m telescope towards the RR do not show any corannulene emission at any of the observed frequencies, down to a rms noise level of Tmb= 8 mK for the J =135 → 134 transition at 137.615 GHz. Comparing the noise level with the synthetic spectrum, we are able to estimate an upper limit to the fraction of carbon locked in corannulene of about 1.0 × 10−5 relative to the total abundance of carbon in PAHs. The sensitivity achieved in this work shows that radio spectroscopy can be a powerful tool to search for polar PAHs. We compare this upper limit with models for the PAH size distribution, emphasizing that small PAHs are much less abundant than predicted. We show that this cannot be explained by destruction but is more likely related to the chemistry of their formation in the environment of the R

    Discovering universal statistical laws of complex networks

    Get PDF
    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their generalisation power, which we identify with large structural variability and absence of constraints imposed by the construction scheme. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This allows, for instance, to infer global features from local ones using regression models trained on networks with high generalisation power. Our results confirm and extend previous findings regarding the synchronisation properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks with good approximation. Finally, we demonstrate on three different data sets (C. elegans' neuronal network, R. prowazekii's metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models

    Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies

    Get PDF
    Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission 'Managing the health effects of climate change' through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake

    The planarity of the stickface motion in the field hockey hit

    Get PDF
    The field hockey hit is an important but poorly understood stroke. This study investigated the planarity of the stickface motion during the downswing, in order to better characterise the kinematics and to assess the suitability of planar pendulum models for simulating the hit. Thirteen experienced female field hockey players were filmed executing hits with a single approach step, and the kinematics of the centre of the stickface were measured. A method was developed for identifying how far back from impact the stickface motion was planar. Orthogonal least-squares regression was used to determine best-fit planes for sections of the stickface path of varying length, each of which ended at impact, and these sections were considered planar if the mean residual between the stickface path and the fitted plane was less than 0.25% of the distance traveled by the stickface during that period. On average the stickface motion was planar for the last 83±12% of its downswing path, with the length of the planar section ranging from 1.85 m to 2.70 m. The suitability of a planar model for the stickface motion was supported, but further investigation of the stick and arm kinematics is warranted

    Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material

    Get PDF
    Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species

    Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential

    Full text link
    Using molecular dynamics simulations we study the thermodynamic behavior of a single-component covalent material described by the recently proposed Environment-Dependent Interatomic Potential (EDIP). The parameterization of EDIP for silicon exhibits a range of unusual properties typically found in more complex materials, such as the existence of two structurally distinct disordered phases, a density decrease upon melting of the low-temperature amorphous phase, and negative thermal expansion coefficients for both the crystal (at high temperatures) and the amorphous phase (at all temperatures). Structural differences between the two disordered phases also lead to a first-order transition between them, which suggests the existence of a second critical point, as is believed to exist for amorphous forms of frozen water. For EDIP-Si, however, the unusual behavior is associated not only with the open nature of tetrahedral bonding but also with a competition between four-fold (covalent) and five-fold (metallic) coordination. The unusual behavior of the model and its unique ability to simulation the liquid/amorphous transition on molecular-dynamics time scales make it a suitable prototype for fundamental studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
    corecore